Díaz Díaz, Jesús IldefonsoBadii, M2023-06-202023-06-201999-05-150022-247X10.1006/jmaa.1999.6335https://hdl.handle.net/20.500.14352/57369We prove the existence of a periodic solution to the problem u(t) - Delta(p)u + R-e(x,u) is an element of mu Q(x,t)beta(u) in M x R, assumed p greater than or equal to 2, M a compact connected and oriented bidimensional Riemannian manifold without boundary, beta(u) a bounded maximal monotone graph (the coalbedo), Q(x, t) a time periodic function (the incoming solar radiation flux) and R-e a time independent strictly increasing function of the surface temperature u (the Earth emitted energy)engTime periodic solutions for a diffusive energy balance model in climatologyjournal articlehttp://www.sciencedirect.com/science/article/pii/S0022247X99963357http://www.sciencedirect.com/restricted access517.956.4nonlinear parabolic equationsperiodic solutionssupersolutionsubsolutionRiemannian manifoldEcuaciones diferenciales1202.07 Ecuaciones en Diferencias