Lucia, AngeloPérez García, DavidPérez Hernández, Antonio2023-06-172023-06-172021[1] R: Alicki, M. Fannes, M. Horodecki, On thermalization in Kitaev’s 2D model. Journal of Physics A: Mathematical and Theoretical, 42(6), 065303 (2009). [2] R. Alicki, M. Horodecki, P. Horodecki, R. Horodecki, On thermal stability of topological qubit in Kitaev’s 4D model. Open Systems & Information Dynamics, 17(01), 1-20 (2010). [3] A. Anshu, Improved local spectral gap thresholds for lattices of finite size. Physical Review B 101, 165104 (2020). [4] F. G. Brandao, A. W. Harrow, M. Horodecki, Local random quantum circuits are approximate polynomial-designs. Communications in Mathematical Physics, 346(2), 397-434 (2016). [5] S. Bravyi, J. Haah, Quantum self-correction in the 3d cubic code model. Physical review letters, 111(20), 200501 (2003). [6] S. Bravyi, B. Terhal, A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes. New Journal of Physics, 11(4), 043029 (2009) [7] B. J. Brown, D. Loss, J. Pachos, C.N. Self, J. Wootton, Quantum memories at finite temperature. Reviews of Modern Physics, 88(4), 045005 (2016) [8] B. J. Brown, A. Al-Shimary, and J. K Pachos, Entropic barriers for twodimensional quantum memories, Phys. Rev. Lett. 112, 120503 (2014). [9] F. Cesi. Quasi-factorization of the entropy and logarithmic Sobolev inequalities for Gibbs random fields, Probability Theory and Related Fields 120.4, 569–584 (2001). [10] J.I. Cirac, D. Poilblanc, N. Schuch, F. Verstraete, Entanglement spectrum and boundary theories with projected entangled-pair states. Physical Review B, 83(24), 245134 (2011). [11] J.I. Cirac, D. Perez-Garcia, N. Schuch, F. Verstraete, Matrix product states and projected entangled pair states: Concepts, symmetries, and theorems, arXiv:2011.12127 (2020). [12] E. B. Davies, Markovian master equations. Commun. Math. Phys. 39, 91–110 (1974). [13] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topological quantum memory. L. Math. Phys., 43(9), 4452-4505 (2002). [14] D. Gosset, E. Mozgunov. Local gap threshold for frustration-free spin systems, Journal of Mathematical Physics 57, 091901 (2016). [15] J. Haah, Local stabilizer codes in three dimensions without string logical operators. Phys. Rev. A, 83(4), 042330 (2011). [16] M. Lemm, E. Mozgunov. Spectral gaps of frustration-free spin systems with boundary, Journal of Mathematical Physics 60, 051901 (2019). [17] M. Lemm, Finite-size criteria for spectral gaps in D-dimensional quantum spin systems. Analytic Trends in Mathematical Physics 741, 121 (2020). [18] M.J. Kastoryano, F. Brandao, Quantum Gibbs Samplers: the commuting case. Communications in Mathematical Physics, 344(3), 915-957 (2016). [19] M. J. Kastoryano and A. Lucia, Divide and conquer method for proving gaps of frustration free Hamiltonians. J. Stat. Mech. 033105 (2018) [20] M. J. Kastoryano, A. Lucia, and D. Perez-Garcia, Locality at the boundary implies gap in the bulk for 2D PEPS. Commun. Math. Phys. 366, 895 (2019). [21] A. Y. Kitaev, A. Shen and M. N. Vyalyi. Classical and quantum computation. (No. 47). American Mathematical Soc. (2002) [22] S. Knabe, Energy gaps and elementary excitations for certain VBS-quantum antiferromagnets. Journal of Statistical Physics, 52(3):627–638 (1988). [23] A. Kómár, O. Landon-Cardinal, K. Temme, Necessity of an energy barrier for self-correction of Abelian quantum doubles. Physical Review A, 93(5), 052337 (2016). [24] T. Kuwahara, A.M. Alhambra, A. Anshu, Improved thermal area law and quasi-linear time algorithm for quantum Gibbs states, arXiv:2007.11174. [25] O. Landon-Cardinal and D. Poulin, Local topological order inhibits thermal stability in 2D, Phys. Rev. Lett., 110, 090502 (2013). [26] M.A. Levin, X.G. Wen, String-net condensation: A physical mechanism for topological phases. Physical Review B, 71(4), 045110 (2005). [27] R. Orus, Tensor networks for complex quantum systems. Nature Reviews Physics, 1(9), 538-550 (2019). [28] D. Pérez-García, A. Pérez-Hernández, Locality estimes for complex time evolution in 1D, arXiv:2004.10516 (2020). [29] D. Pérez-García, F. Verstraete, J. Cirac, M. M. Wolf. PEPS as unique ground states of local Hamiltonians. Quantum Information and Computation. 8. (2007) [30] M. Pretko, X. Chen, Y. You, Fracton phases of matter. International Journal of Modern Physics A, 35(06), 2030003 (2020). [31] K. Temme, Thermalization Time Bounds for Pauli Stabilizer Hamiltonians. Commun. Math. Phys. 350, 603–637 (2017). [32] F. Verstraete, V. Murg, J.I. Cirac, Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Advances in Physics, 57(2), 143-224 (2008). [33] F. Verstraete, M.M. Wolf, D. Pérez-García, J.I. Cirac. Criticality, the Area Law, and the Computational Power of Projected Entangled Pair States. Phys. Rev. Lett. 96, 220601 (2006).https://hdl.handle.net/20.500.14352/8419We show that the Davies generator associated to any 2D Kitaev’s quantum double model has a non-vanishing spectral gap in the thermodynamic limit. This validates rigorously the extended belief that those models are useless as self-correcting quantum memories, even in the non-abelian case. The proof uses recent ideas and results regarding the characterization of the spectral gap for parent Hamiltonians associated to Projected Entangled Pair States in terms of a bulk-boundary correspondence.engThermalization in Kitaev’s quantum double models via Tensor Network techniquesjournal articlehttps://doi.org/10.48550/arXiv.2107.01628open access530.145Quantum physicsMathematical physicsFísica matemáticaTeoría de los quanta2210.23 Teoría Cuántica