Castilla González, Elena MaríaMartín Apaolaza, NirianPardo Llorente, LeandroZografos, Konstantinos2023-06-172023-06-1720201099-430010.3390/e22030270https://hdl.handle.net/20.500.14352/7545This paper presents a model selection criterion in a composite likelihood framework based on density power divergence measures and in the composite minimum density power divergence estimators, which depends on an tuning parameter α. After introducing such a criterion, some asymptotic properties are established. We present a simulation study and two numerical examples in order to point out the robustness properties of the introduced model selection criterion.engAtribución 3.0 Españahttps://creativecommons.org/licenses/by/3.0/es/Model Selection in a Composite Likelihood Framework Based on Density Power Divergencejournal articlehttps://doi.org/10.3390/e22030270https://www.mdpi.com/1099-4300/22/3/270open access519.21Composite likelihoodComposite minimum density power divergence estimatorsModel selectionProbabilidad compuestaProbabilidadesMatemáticas (Matemáticas)Probabilidades (Matemáticas)12 Matemáticas