Ibort, A.Martínez Ontalba, Celia2023-06-202023-06-2019960393-044010.1016/0393-0440(96)89538-6https://hdl.handle.net/20.500.14352/57636Fortune (1985) proved Arnold's conjecture for complex projective spaces, by exploiting the fact that CPn-1 is a symplectic quotient of C-n. In this paper, we show that Fortune's approach is universal in the sense that it is possible to translate Arnold's conjecture on any closed symplectic manifold (Q,Omega) to a critical point problem with symmetry on loops in R(2n) With its Standard symplectic structure.engArnold’s conjecture and symplectic reductionjournal articlehttp://www.sciencedirect.com/science/article/pii/0393044096895386http://www.sciencedirect.comrestricted access517517.9symplectic reductioncritical pointsArnold’s conjectureAnálisis matemáticoEcuaciones diferenciales1202 Análisis y Análisis Funcional1202.07 Ecuaciones en Diferencias