Carpio, AnaDíez Antón, Sofía2023-06-172023-06-172019-02[1] J.SNEYD J. KEENER. Mathematical Physiology-System physiology, volume 8/I. Interdisciplinary Applied Mathematics, Springer. Segunda edición., 2008. [2] ARTHUR DAVID SNIDER R. KENT NAGLE, EDWARD B. SAFF. Ecuaciones diferenciales y problemas con valores en la frontera. Pearson. Addison Wesley. Cuarta edición., 2004. [3] L. L. BONILLA A. CARPIO. Pulse propagation in discrete systems of coupled excitable cells. SIAM J. Appl. Math., 63, No.2:619-635, 2002. [4] L. L. BONILLA A. CARPIO. Wave front depinning transitions in discrete one-dimensional reaction difusion equations. Phys. Rev. Lett, 86:6034-6037, 2001. [5] Y. TIMOFEEVA. Travelling waves in a model of quasi-active dentrites with active spines. Elsevier. Physica D, 239:494-503, 2010. [6] P.C. BRESSLOFF S. COOMBES. Solitary waves in a model of dendritic cable with active spines. SIAM J. Appl. Math, 61, No.2:432-453, 2000. [7] J. B. KELLER J. RINZEL. Traveling wave solutions of a nerve conduction equation. Biophysical Journal, 13:1313-1337, 1973. [8] C. K. R. T. JONES. Stability of the traveling wave solutions of the fitzhugh-nagumo system. Transactions of the American Mathematical Society, 286:431-469, 1984. [9] E. YANAGIDA. Stability of fast travelling pulse solutions of the fitzhugh-nagumo equation. Journal of Mathematical Biology, 22:81-104, 1985. [10] K. MAGINU. Geometrical characteristics associated with stability and bifurcations of periodic travelling waves in reaction-difusion equations. SIAM Journal on Applied Mathematics, 45:750-774, 1985. [11] A. F. HUXLEY A. L. HODGKIN. Currents carried by sodium and potassium ions through the membrane of the giant axon of loligo. Journal of Physiology, 116:449-472, 1952. [12] A. F. HUXLEY A. L. HODGKIN. The components of membrane conductance in the giant axon of loligo. Journal of Physiology, 116:473-496, 1952. [13] A. F. HUXLEY A. L. HODGKIN. The dual efect of membrane potential on sodium conductance in the giant axon of loligo. Journal of Physiology, 116:497-506, 1952. [14] A. F. HUXLEY A. L. HODGKIN. A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117:500-544, 1952. [15] S. P. HASTINGS. The existence of progressive wave solutions to the hodgkin{huxley equations. Archive for Rational Mechanics and Analysis, 60:229-257, 1975. [16] G. CARPENTER. A geometric approach to singular perturbation problems with applications to nerve impulse equations. Journal of Diferential Equations, 23:335-367, 1977. [17] J. P. KEENER. Propagation and its failure in coupled systems of discrete excitable cells. SIAM Journal on Applied Mathematics, 47:556-572, 1987. [18] T. ERNEUX V. BOOTH. Understanding propagation failure as a slow capture near a limit point. SIAM J. Appl. Math, 55:1372-1389, 1995. [19] J. RINZEL R.N. MILLER. The dependence of impulse propagation speed on firing frequency, dispersion, for the hodgkinhuxley model. Biophys. J., 34:227-259, 1981.https://hdl.handle.net/20.500.14352/15306En este trabajo se estudian dos casos de propagación de impulsos nerviosos: el continuo y el discreto. En ambos casos aparecen ciertas ecuaciones diferenciales en derivadas parciales necesarias para resolverlos, y para poder formular y expresar ondas viajeras en problemas biológicos. Además, ayudan al estudio del comportamiento de las espinas dendríticas de las neuronas y los nervios mielinados. Para ello, estudiamos a fondo el modelo Hodgkin-Huxley, el método del disparo, así como el fallo de propagación de los impulsos nerviosos y el papel que juegan los sistemas de reacción-difusión. Se da una versión generalizada del modelo SDS y analizamos brevemente las equivalencias formales entre estos resultados.In this paper, two cases of nervous impulses propagation are studied: the continuous and the discrete. In both cases appear certain differential equations in partial derivatives, which are needed to solve the cases and to formulate and express traveling waves in biological problems. In addition, these differential equations help the study of the behavior of the neurons dendritic spines and the myelinated nerves. To do so, we study in depth the Hodgkin-Huxley model, the firing method, as well as the failure of propagation of nerve impulses and the role played by the reaction-diffusion systems. A generalized version of the SDS model is given and we analyze briefly the formal equivalences between these results.spaOndas viajeras en modelos SDS (spike diffuse spike) de propagación de impulsos nerviososTraveling waves in SDS (spike diffuse spike) models of nervous impulse propagationbachelor thesisopen access517.9Propagación de impulsos nerviososFallo de propagaciónNervios mielinadosOndas viajerasTrenes de ondaEspinas dendríticasEcuaciones diferenciales en derivadas parcialesEcuación biestableEcuaciones FitzHugh-NagumoModelos SDS Spike-diffuse-spikeSistemas de reacción-difusiónModelo Hodgkin-HuxleyMétodo del disparoNervous impulse propagationPropagation failureMyelinated nervesTraveling wavesWave trainsDendritic spinesDifferential equations in partial derivativesBistable equationFitzHugh-Nagumo equationsSDS Spike-diffuse-spike modelsReaction-diffusion systemsHodgkin-Huxley modelFiring methodMatemáticas (Matemáticas)Ecuaciones diferenciales12 Matemáticas1202.07 Ecuaciones en Diferencias