Rodríguez Bernal, AníbalWang, Bixiang2023-06-202023-06-2020000308-210510.1017/S0308210500000731https://hdl.handle.net/20.500.14352/57919The Cauchy problem for the time-dependent Ginzburg-Landau equations of superconductivity in R-d (d = 2, 3) is investigated in this paper. When d = 2, we show that the Cauchy problem for this model is well posed in L-2. When d = 3, we establish the existence result of solutions for L-3 initial data and the uniqueness result for L-4 initial data.engCauchy problem for the time-dependent Ginzburg-Landau model of superconductivityjournal articlehttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=1196076http://journals.cambridge.org/action/loginrestricted access517.986Ginzburg-Landau equationsSuperconductivityExistenceUniquenessWeak-kappa-limitFunciones (Matemáticas)1202 Análisis y Análisis Funcional