Cano Sevilla, Francisco JoseMuntuate del Rio, A.Pérez Prados, A.2023-06-202023-06-2019960210-8054https://hdl.handle.net/20.500.14352/58378“First we analyze the variation produced in the value of the contingency coefficient by a pruning process in a decision tree T. Then we define a criterion that linearly combines the contingency coefficient and the simplicity index. Using this criterion, we propose a method for obtaining an optimum tree for each of the distinct values of the parameter � of the linear combination. To select the optimum tree from among those trees, we use the Chuprov coefficient, depending on the two measures considered for the quality of the tree.”spaCriterion for the selection of an optimum tree with respect to association coefficients obtained from the x2.(Spanish:Criterio de selección de un árbol óptimo según coeficientes de asociación derivados de x2)journal articlehttp://www.idescat.cat/sort/questiio/questiiopdf/20.2.2.cano.pdfrestricted access519.226Árboles de decisiónProceso podaCoeficiente de contingenciaCoeficiente de TschuprowSimplicidadÁrbol óptimoTeoría de la decisión1209.04 Teoría y Proceso de decisión