Llanes Estrada, Felipe JoséGeneral, I. J.Cotanch, S. R.2023-06-202023-06-202007-071. D. Alde et al., Phys. Lett. B 205, 397 (1988) 2. E852 Collaboration, D.R. Thompson et al., Phys. Rev. Lett. 79, 1630 (1997) 3. E852 Collaboration, S.U. Chung et al., Phys. Rev. D 60, 092 001 (1999) 4. E852 Collaboration, G.S. Adams et al., Phys. Rev. Lett. 81, 5760 (1998) 5. E852 Collaboration, S.U. Chung et al., Phys. Rev. D 65, 072 001 (2002) 6. A.R. Dzierba et al., Phys. Rev. D 73, 072 001 (2006) 7. VES Collaboration, D.V. Amelin et al., Phys. Lett. B 356, 595 (1995) 8. A. Zaitsev, AIP Conf. Proc. 432, 461 (1998) 9. A. Donnachie, Y.S. Kalashnikova, Phys. Rev. D 60, 114 011 (1999) 10. Crystal Ball Collaboration, K. Karch et al., Z. Phys. C 54, 33 (1992) 11. Crystal Barrel Collaboration, J. Adomeit et al., Z. Phys. C 71, 227 (1996) 12. WA102 Collaboration, D. Barberis et al., Phys. Lett. B 413, 217 (1997) 13. Y.S. Kalashnikova, Nucl. Phys. A 689, 49 (2001) 14. F. Buisseret, V. Mathieu, arXiv:hep-ph/0607083 15. C. Bernard et al., Phys. Rev. D 56, 7039 (1997) 16. C. Bernard et al., Nucl. Phys. B Proc. Suppl. 73, 264 (1999) 17. P. Lacock, K. Schilling, Nucl. Phys. B Proc. Suppl. 73, 261 (1999) 18. J.N. Hedditch et al., Phys. Rev. D 72, 114 507 (2005) 19. X.Q. Luo, Z.H. Mei, Nucl. Phys. B Proc. Suppl. 119, 263 (2003) 20. T. Barnes, F.E. Close, E.S. Swanson, Phys. Rev. D 52, 5242 (1995) 21. F.E. Close, P.R. Page, Nucl. Phys. B 443, 233 (1995) 22. K.Waidelich, Diploma Thesis, North Carolina State University (2001) 23. T. Barnes, Ph.D. Thesis, Caltech (1977) 24. T. Barnes, Nucl. Phys. B 158, 171 (1979) 25. T. Barnes, F. Close, Phys. Lett. B 116, 365 (1982) 26. M. Chanowitz, S. Sharpe, Nucl. Phys. B 222, 211 (1983) 27. T. Barnes et al., Nucl. Phys. B 224, 241 (1983) 28. M. Flensburg et al., Z. Phys. C 22, 293 (1984) 29. P. Hasenfratz et al., Phys. Lett. B 95, 299 (1980) 30. F. Iddir, L. Semlala, arXiv:hep-ph/0511086 31. Y. Liu, X.Q. Luo, Phys. Rev. D 73, 054 510 (2006) 32. L.A. Griffiths, C. Michael, P.E.L. Rakow, Phys. Lett. B 129, 351 (1983) 33. S. Perantonis, C. Michael, Nucl. Phys. B 347, 854 (1990) 34. F.J. Llanes-Estrada, S.R. Cotanch, Nucl. Phys. A 697, 303 (2002) 35. F.J. Llanes-Estrada, S.R. Cotanch, A.P. Szczepaniak, E.S. Swanson, Phys. Rev. C 70, 035 202 (2004) 36. F.J. Llanes-Estrada, P. Bicudo, S.R. Cotanch, Phys. Rev. Lett. 96, 081 601 (2006) 37. F.J. Llanes-Estrada, S.R. Cotanch, Phys. Rev. Lett. 84, 1102 (2000) 38. G.S. Bali, K. Schilling, Phys. Rev. D 46, 2636 (1992) 39. J. Greensite, S. Olejnik, Phys. Rev. D 67, 094 503 (2003) [arXiv:hep-lat/0302018] 40. D. Zwanziger, Phys. Rev. D 70, 094 034 (2004) [arXiv:hepph/ 0312254] 41. K. Langfeld, L. Moyaerts, Phys. Rev. D 70, 074 507 (2004) [arXiv:hep-lat/0406024] 42. E. Gubankova, C.R. Ji, S.R. Cotanch, Phys. Rev. D 62, 074 001 (2000) [arXiv:hep-ph/0003289] 43. D.G. Robertson, E.S. Swanson, A.P. Szczepaniak, C.R. Ji, S.R. Cotanch, Phys. Rev. D 59, 074 019 (1999) 44. F.J. Llanes Estrada, S.R. Cotanch, Phys. Lett. B 504, 15 (2001) 45. T.D. Lee, Particle Physics and Introduction to Field Theory (Harwood Academic Publishers, NewYork, 1990) 46. D. Zwanziger, Nucl. Phys. B 485, 185 (1997) and private communication 47. A.P. Szczepaniak, E.S. Swanson, Phys. Rev. D 65, 0 252 012 (2002) 48. G.P. Lepage, J. Comput. Phys. 27, 192 (1978) 49. G.P. Lepage, Cornell University Report CLNS (1980) 80 447 (unpublished) 50. S. Eidelman et al., Phys. Lett. B 592, 1 (2004) 51. A.P. Szczepaniak, P. Krupinski, Phys. Rev. D 73, 116 002 (2006) 52. Joan Soto, private communication at Brookhaven National Laboratory’s “International Heavy Quarkonium Workshop”, une 20061434-604410.1140/epjc/s10052-007-0298-3https://hdl.handle.net/20.500.14352/50811© Springer-Verlag / Societ`a Italiana di Fisica 2007. Work supported in part by grants FPA2004-02602, 2005-02327, PR27/05-13955-BSCH (Spain) and U. S. DOE Grants DE-FG02 97ER41048 and DE-FG02-03ER41260.An effective Coulomb gauge Hamiltonian, H-eff, is used to calculate the light ( u (u) over barg), strange ( s (s) over barg) and charmed (c (c) over barg) hybrid meson spectra. For the same two parameter H-eff providing glueball masses consistent with lattice results and a good description of the observed u, d, s and c quark mesons, a large-scale variational treatment predicts that the lightest hybrid has J(PC) = 0(++) and mass 2.1 GeV. The lightest exotic 1(-+) state is just above 2.2 GeV, near the upper limit of lattice and flux tube predictions. These theoretical formulations all indicate that the observed 1(-+) pi(1)(1600) and, more clearly, pi(1)(1400) are not hybrid states. The Coulomb gauge approach further predicts that in the strange and charmed sectors, respectively, the ground state hybrids have 1(+-) with masses 2.1 and 3.8 GeV, while the. rst exotic 1( +) states are at 2.4 and 4.0 GeV. Finally, using our hybrid wavefunctions and the Franck-Condon principle, a novel experimental signature is presented to assist heavy hybrid meson searches.engCoulomb gauge approach to (qqg)over-bar hybrid mesonsjournal articlehttp://dx.doi.org/10.1140/epjc/s10052-007-0298-3http://arxiv.org/abs/hep-ph/0609115http://link.springer.comopen access53Mit Bag ModelExotic MesonLattice Qcd18 Gev/CQuarkCloverStateGlueFísica (Física)22 Física