González Díaz, GermánBlanco, N.Artús, L.Cuscó, R.Ibáñez, J.2023-06-202023-06-201999-08-151) See, for instance, G. Abstreiter, M. Cardona, and A. Pinczuk, in Light Scattering in Solids IV, edited by M. Cardona and G. Güntherodt, Topics in Applied Physics Vol. 54 (Springer-Verlag, Berlin, 1984), and references therein. 2) V. I. Zemski, E. L. Ivchenko, D. N. Mirlin, and I. I. Reshina, Solid State Commun., 16, 221, 1975. 3) D. Olego, A. Pinczuk, and A. A. Ballman, Solid State Commun., 45, 941, 1983. 4) T. Nakamura and T. Katoda, J. Appl. Phys., 55, 3064, 1984. 5) W. Richter, U. Nowak, H. Jürgensen, and U. Rössler, Solid State Commun., 67, 199, 1988. 6) B. H. Bairamov, I. P. Ipatova, V. A. Milorava, V. V. Toporov, K. Naukkarinen, T. Tuomi, G. Irmer, and J. Monecke, Phys. Rev. B, 38, 5722, 1988. 7) B. Boudart, B. Prévot, and C. Schwab, Appl. Surf. Sci., 50, 295, 1991. 8) D. J. Olego and H. B. Serreze, J. Appl. Phys., 58, 1979, 1985. 9) S. Ernst, A. R. Goñi, K. Syassen, and M. Cardona, Phys. Rev. B, 53, 1287, 1996. 10) U. Nowak, W. Richter, and G. Sachs, Phys. Status Solidi B, 108, 131, 1981. 11) R. Cuscó, J. Ibáñez, and L. Artús, Phys. Rev. B, 57, 12, 197, 1998. 12) M. V. Klein, B. N. Ganguly, and P. J. Colwell, Phys. Rev. B, 6, 2380, 1972. 13) H. Yugami, S. Nakashima, A. Mitsuishi, A. Uemoto, M. Shigeta, K. Furukawa, A. Suzuki, and S. Nakajima, J. Appl. Phys., 61, 354, 1987. 14) T. Kozawa, T. Kachi, H. Kano, Y. Taga, M. Hashimoto, N. Koide, and K. Manabe, J. Appl. Phys., 75, 1098, 1994. 15) H. Harirna, S. Nakashima, and T. Uemura, J. Appl. Phys., 78, 1996, 1995. 16) C. Wetzel, W. Walukiewicz, E. E. Haller, J. Ager III, I. Grzegory, S. Porowki, and T. Suski, Phys. Rev. B, 53, 1322, 1996. 17) J. P. Biersak and L. G. Haggmark, Nucl. Instrum. Methods, 174, 257, 1980 --- J. F. Ziegler, J. P. Biersak, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985). 18) D. E. Aspnes and A. A. Studna, Phys. Rev. B, 27, 985, 1983. 19) D. T. Hon and W. L. Faust, Appl. Phys., 1, 241, 1973. 20) D. Olego and M. Cardona, Phys. Rev. B, 24, 7217, 1981. 21) K. Wan and J. F. Young, Phys. Rev. B, 41, 10, 772, 1990. 22) J. F. Young and K. Wan, Phys. Rev. B, 35, 2544, 1987. 23) N. D. Mermin, Phys. Rev. B, 1, 2362, 1970. 24) M. Ramsteiner, J. Wagner, P. Hiesinger, K. Köhler, and U. Rössler, J. Appl. Phys., 73, 5023, 1993. 25) H. R. Chandrasekhar and A. K. Ramdas, Phys. Rev. B, 21, 1511, 1980. 26) U. Rössler, Solid State Commun., 49, 943, 1984. 27) M. Bugajski and W. Lewandowski, J. Appl. Phys., 57, 521, 1985. 28) D. Schneider, D. Rürup, A. Plichta, H. U. Grubert, A. Schlachetzki, and K. Hansen, Z. Phys. B, 95, 281, 1994. 29) E. Anastassakis, Y. S. Raptis, M. Hünermann, W. Richter, and M. Cardona, Phys. Rev. B, 38, 7702, 1988. 30) O. Madelung, W. von der Osten, and U. Rössler, in Numerical Data and Functional Relationships in Science and Technology, edited by O. Madelung, Landolt-Börnstein, New Series, Group III, Vol. 17, Pt. A (Springer-Verlag, Berlin, 1982). 31) L. Artús, R. Cuscó, J. M. Martín, and G. González-Díaz, Phys. Rev. B, 50, 11, 552, 1994. 32) E. Bedel, G. Landa, R. Carles, J. P. Redoulès, and J. B. Renucci, J. Phys. C, 19, 1471, 1986. 33) D. Lancefield, A. R. Adams, and M. A. Fisher, J. Appl. Phys., 62, 2342, 1987. 34) R. Fukasawa and S. Perkowitz, Phys. Rev. B, 50, 14, 119, 1994. 35) G. Irmer, V. V. Toporov, B. H. Bairamov, and J. Monecke, Phys. Status Solidi B, 119, 595, 1983. 36) P. D. Wang, M. A. Foad, C. M. Sotomayor-Torres, S. Thomas, M. Watt, R. Cheung, C. D. Wilkinson, and S. P. Beaumont, J. Appl. Phys., 71, 3754, 1992. 37) H. Lee and M. V. Klein, J. Appl. Phys., 81, 1899, 1997. 38) D. H. Jackson, Classical Electrodynamics (Wiley, New York, 1975). 39) J. S. Blackemore, Semiconductor Statistics (Pergamon, Oxford, 1962).0163-182910.1103/PhysRevB.60.5456https://hdl.handle.net/20.500.14352/59344© The American Physical Society. The authors would like to acknowledge the Spanish Ministerio de Educación y Cultura for financial support.We have studied LO phonon-plasmon coupled modes by means of Raman scattering in n-InP for carrier densities between 6x10(16) and 1x10(19) cm(-3). A line-shape theory based on the Lindhard-Mermin dielectric function that takes into account the nonparabolicity of the InP conduction band as well as temperature and finite wave-vector effects is used to fit the Raman spectra and extract accurate values of the electron density. The results obtained from the Lindhard-Mermin model are compared with the charge density determinations based on the Drude and the hydrodynamical models, and the approximations involved in these models are discussed.engRaman scattering by LO phonon-plasmon coupled modes in n-type InPjournal articlehttp://dx.doi.org/10.1103/PhysRevB.60.5456http://journals.aps.org/open access537P-Type GaAsCarrier ConcentrationConduction-BandGallium NitrideSpectraPhotoluminescenceNonparabolicityCrystalsGaP.ElectricidadElectrónica (Física)2202.03 Electricidad