Maciá Barber, Enrique AlfonsoDomínguez-Adame Acosta, Francisco2023-06-202023-06-201994-12-151. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984). 2. R. Merlin, K. Bajema, R. Clarke, F. Y. Juang, and P. K. Bhattacharya, Phys. Rev. Lett. 55, 1768 (1985). 3. R. Merlin, K. Bajema, J. Nagle, and K. Ploog, J. Phys. (Paris) Colloq. 48, C5-503 (1987). 4. F. Axel and H. Tarauchi, Phys. Rev. Lett. BB, 2223 (1991). 5. J. Bellissard, A. Bovier, and J. M. Ghez, Rev. Math. Phys. 4, 1 (1992). 6. M. Severin and R. Riklund, Phys. Rev. B$9, 10 362 (1989). 7. G. Y. Oh, C. S. Ryu, and M. H. Lee, J. Phys. Condens. Matter 4, 8187 (1992). 8. M. Kohmoto and J. R. Banavar, Phys. Rev. B 34, 563 (1986). 9. J. X. Zhong, J. R. Yan, and J. Q. You, J. Phys. Condens. Matter 8, 5685 (1991). 10. E. Maciá, F. Domínguez-Adame, and A. Sánchez, Phys. Rev. B 4$, 9503 (1994). 11. C. S. Ryu, G. Y. Oh, and M. H. Lee, Phys. Rev. 8 48, 132 (1993). 12. D. Huang, G. Gumbs, and M. Kolar, Phys. Rev. 8 46, 11479 (1992). 13. C. L. Roy and A. Khan, Phys. Rev. B 49, 14979 (1994). 14. S. Tamura and F. Nori, Phys. Rev. B 40, 9770 (1989). 15. A. Bovier and J. M. Ghez (unpublished). 16. D. Tuet, M. Potemski, Y. Y. Wang, J. C. Maan, L. Tapfer, and K. Ploog, Phys. Rev. Lett. BB, 2128 (1991). 17. D. Munzar, L. Bodaek, J. Humlidek, and J. Ploog, J. Phys. Condens. Matter 6, 4107 (1994). 18. F. Domínguez-Adame, B. Méndez, A. Sánchez, and E, Maciá, Phys. Rev. B 49, 3839 (1994). 19. F. Domínguez-Adame, E. Maciá, and A. Sánchez, Phys. Rev. B 50, 6453 (1994). 20. D. L. Huber and W. Y. Ching, Phys. Rev. 8 39, 8652 (1989). 21. N. Niu and F. Nori, Phys. Rev. Lett. 57, 2057 (1986);Phys. Rev. B 42, 10329 (1990). 22. Y. Liu and W. Sritrakool, Phys. Rev. B 43, 1110 (1991). 23. E. Maciá, F. Domínguez-Adame, and A. Sánchez, Phys. Rev. E 50, 679 (1994)0163-182910.1103/PhysRevB.50.16856https://hdl.handle.net/20.500.14352/59382© 1994 The American Physical Society. The authors thank A. Sánchez for a critical reading of the manuscript. This work was partially supported by Universidad Complutense through Project No. PR161/93-4811.Exciton optical absorption in self-similar aperiodic one-dimensional systems is considered, focusing our attention on Thue-Morse and Fibonacci lattices as canonical examples. The absorption line shape is evaluated by solving the microscopic equations of motion of the Frenkel-exciton problem on the lattice, in which on-site energies take on two values, according to the Thue-Morse or Fibonacci sequences. Results are compared to those obtained in random lattices with the same stoichiometry and size. We find that aperiodic order causes the occurrence of well-de6ned characteristic features in the absorption spectra, which clearly di8'er from the case of random systems, indicating a most peculiar exciton dynamics. The origin of all the absorption lines is assigned by considering the self-similar aperiodic lattices as composed of two-center blocks, within the same spirit of the renormalization group ideas.engExcitation optical-absorption in self-similar aperiodic latticesjournal articlehttp://dx.doi.org/10.1103/PhysRevB.50.16856http://journals.aps.orgopen access538.9Gaas-Alas HeterostructuresThue-Morse ChainElectronic-PropertiesPhonon PropertiesEnergy-SpectrumWave-FunctionFibonacciSystemsFísica de materiales