Berbel López, Miguel ÁngelCastrillón López, Marco2023-06-222023-06-222022-10-27Berbel López, M. Á. & Castrillón López, M. «Poisson–Poincaré Reduction for Field Theories». Journal of Geometry and Physics, vol. 191, septiembre de 2023, p. 104879. DOI.org (Crossref), https://doi.org/10.1016/j.geomphys.2023.104879.10.1016/j.geomphys.2023.104879https://hdl.handle.net/20.500.14352/72668Given a Hamiltonian system on a fiber bundle, there is a Poisson covariant formulation of the Hamilton equations. When a Lie group G acts freely, properly, preserving the fibers of the bundle and the Hamiltonian density is G-invariant, we study the reduction of this formulation to obtain an analogue of Poisson–Poincaré reduction for field theories. This procedure is related to the Lagrange–Poincaré reduction for field theories via a Legendre transformation. Finally, an application to a model of a charged strand evolving in an electric field is given.engPoisson–Poincaré reduction for Field Theoriesjournal articlehttps://doi.org/10.1016/j.geomphys.2023.104879open access51-7Field theorySymmetriesCovariant reductionPoisson bracketPolysymplecticMultisymplecticPoisson–PoincaréFísica matemática