Wolf, Michael M.Pérez García, David2023-06-202023-06-202009-05-15K. Hammerer, A. S. Sorensen, and E. S. Polzik, arXiv:0807.3358. P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf, and P. Zoller, Phys. Rev. Lett. 97, 033003 (2006). A. Acin, N. Gisin, and L. Masanes, Phys. Rev. Lett. 97, 120405 (2006). D. Pérez-García, M. M.Wolf, C. Palazuelos, I. Villanueva, and M. Junge, Commun. Math. Phys. 279, 455 (2008). N. Brunner, S. Pironio, A. Acin, N. Gisin, A. A. Methot, and V. Scarani, Phys. Rev. Lett. 100, 210503 (2008). T. Vértesi and K. F. Pál, arXiv:0812.1572 [Phys. Rev. A (to be published)]; Jop Brie¨t, Harry Buhrman, and Ben Toner, arXiv:0901.2009. M. M. Wolf, J. Eisert, T. S. Cubitt, and J. I. Cirac, Phys. Rev. Lett. 101, 150402 (2008). D. Sundararajan, Digital Signal Processing (World Scientific, Singapore, 2003). F. Takens, in Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1981), Vol. 898. F. R. Gantmacher, The Theory of Matrices I and II (Chelsea Publishing Company, New York, 1959). M. M. Wolf and D. Perez-Garcia, arXiv:0901.2542 [Phys. Rev. Lett. (to be published)]. M. M. Wolf and J. I. Cirac, Commun. Math. Phys. 279, 147 (2008). F. I. Karpelevich, Izvestia Acad. Nauk SSSR, Seria Mathem. 15, 361 (1951); Eleven Papers Translated from the Russian (American Mathematical Society, Providence, 1988) Vol. 140. N. Dimitriev and E. Dynkin, Izvestia Acad. Nauk SSSR, Seria Mathem. 10, 167 (1946); Eleven Papers Translated from the Russian (American Mathematical Society, Providence, 1988), Vol. 140, [see Fig. 11 p. 74]. A. Heller, Ann. Math. Stat. 36, 1286 (1965). Y. Dai, Acta Mathematica Sinica 10, 99 (1994). Problem III.6.4. in R. Bhatia, Matrix Analysis (Springer, New York, 1997). S.Wehner, M. Christandl, and A. C. Doherty, Phys. Rev. A 78, 062112 (2008).0031-900710.1103/PhysRevLett.102.190504https://hdl.handle.net/20.500.14352/42494Using tools from classical signal processing, we show how to determine the dimensionality of a quantum system as well as the effective size of the environment's memory from observable dynamics in a model-independent way. We discuss the dependence on the number of conserved quantities, the relation to ergodicity and prove a converse showing that a Hilbert space of dimension D+2 is sufficient to describe every bounded sequence of measurements originating from any D-dimensional linear equations of motion. This is in sharp contrast to classical stochastic processes which are subject to more severe restrictions: a simple spectral analysis shows that the gap between the required dimensionality of a quantum and a classical description of an observed evolution can be arbitrary large.engAssessing Quantum Dimensionality from Observable Dynamicsjournal articlehttp://link.aps.org/doi/10.1103/PhysRevLett.102.190504http://www.aps.org/open access530.1Física matemática