Herrero, Miguel A.Ughi, M.Velázquez, J.J. L.2023-06-202023-06-2020041021-972210.1007/s00030-003-1033-xhttps://hdl.handle.net/20.500.14352/50106We consider here the homogeneous Dirichlet problem for the equation u(t)= uΔu - γ|∇u|(2) with γ ∈ R, u ≥ 0, in a noncylindrical domain in space-time given by |x| ≤ R(t) = (T - t)(p), with p > 0. By means of matched asymptotic expansion techniques we describe the asymptotics of the maximal solution approaching the vertex x = 0, t = T, in the three different cases p > 1/2, p = 1/2(vertex regular), p < 1/2 (vertex irregular).engApproaching a vertex in a shrinking domain under a nonlinear flowjournal articlehttp://www.springerlink.com/content/2kyc4v8wknhrn1da/fulltext.pdfhttp://www.springerlink.comrestricted access517.95517.956.4531.44536.2Asymptoticsnonlinear flowdegenerate parabolic equationviscosity solutionsDirichlet problemheat-equationsingularitiesregularitypointsFísica matemáticaEcuaciones diferenciales1202.07 Ecuaciones en Diferencias