Creffield, Charles E.Sangiovanni, G.Capone, M.2023-06-202023-06-202005-03[1] J. M. De Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. del Moral, and Z. Arnold, Nature 386, 256 (1997); A. J. Millis, ibid. 392, 147 (1998); M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001). [2] Organic Conductors edited by J.-P. Farges, (Marcel Dekker, New York, 1994). [3] M. Matus, H. Kuzmany, and E. Sohmen, Phys. Rev. Lett. 68, 2822 (1992); K. Harigaya, Phys. Rev. B 45, 13676 (1992); B. Friedman, ibid. 45, 1454 (1992); W. M. You, C. L. Wang, F. C. Zhang, and Z. B. Su, ibid. 47, 4765 (1993). [4] Guo-Meng-Zhao, M. B. Hunt, H. Keller, and K. A. Muller, Nature 385, 236 (1997); A. Lanzara, P. V. Bogdanov, X. J. Zhou, S. A. Kellar, D. L. Feng, E. D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.-I. Shimoyama, T. Noda, S. Uchida, Z. Hussain, and Z.-X. Shen, ibid. 412, 510 (2001); R. J. McQueeney, J. L. Sarrao, P. G. Pagliuso, P. W. Stephens, and R. Osborn, Phys. Rev. Lett. 87 77001 (2001). [5] J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer, Phys. Rev. Lett. 86, 4656 (2001); P. Postorino, A. Congeduti, P. Dore, A. Nucara, A. Bianconi, D. Di Castro, S. De Negri, and A. Saccone, Phys. Rev. B 65, 020507R (2002). [6] M. Capone, W. Stephan and M. Grilli, Phys. Rev. B 56, 4484 (1997). [7] Robert J. Bursill, Ross H. McKenzie and Chris J. Hamer, Phys. Rev. Lett 80, 5607 (1998). [8] Jorge E. Hirsch and Eduardo Fradkin, Phys. Rev. B 27, 4302 (1983). [9] A. Weiße and H. Fehske, Phys. Rev. B 58, 13526 (1998). [10] Ross H. McKenzie, C. J. Hamer and D. W. Murray, Phys. Rev. B53, 9676 (1996). [11] Zhiguo L¨u, Qin Wang, and Hang Zheng, Phys. Rev. B 69, 134304 (2004). [12] C. A. Perroni, V. Cataudella, G. De Filippis, G. Iadonisi, V. Marigliano Ramaglia, and F. Ventriglia, Phys. Rev. B 67, 214301 (2003). [13] S. Sykora, A. Huebsch, K. W. Becker, G. Wellein, and H. Fehske, Phys. Rev. B 71, 045112 (2005). [14] Martin Hohenadler, Markus Aichhorn, and Wolfgang von der Linden, Phys. Rev. B 68, 184304 (2003). [15] R. Blankenbecler, D. J. Scalapino and R. L. Sugar, Phys. Rev. D 24, 2278 (1981). [16] J. E. Gubernatis, M. Jarrell, R. N. Silver, and D. S. Sivia, Phys. Rev. B 44, 6011 (1991). [17] R. K. Bryan, Eur. Bio. J. 18, 165 (1990). [18] C. E. Creffield, E. G. Klepfish, E. R. Pike and S. Sarkar, Phys. Rev. Lett. 75, 517 (1995). [19] L. Boeri, G. B. Bachelet, E. Cappelluti and L. Pietronero, Phys. Rev. B 65, 214501 (2002). [20] A. S. Alexandrov, V. V. Kabanov and D. K. Ray, Phys. Rev. B 49, 9915 (1994). [21] As we do not use an explicitly symmetric form for the electron-phonon interaction term in Eq.1 (i.e. we use gqn instead of gq (n − hni)), this bimodal distribution is not symmetric about the origin, instead having an overall shift of –q_0. [22] M. Capone and S. Ciuchi, Phys. Rev. B 65, 104409 (2002). [23] M. Capone and S. Ciuchi, Phys. Rev. Lett. 91, 186405 (2003).1434-602810.1140/epjb/e2005-00112-9https://hdl.handle.net/20.500.14352/51585© Springer. We thank C. Castellani and S. Ciuchi for valuable discussions. We also acknowledge Italian MIUR Cofin2003 for financial support.We investigate the effect of electron-phonon interaction on the phononic properties in the onedimensional half-filled Holstein model of spinless fermions. By means of determinantal Quantum Monte Carlo simulation we show that the behavior of the phonon dynamics gives a clear signal of the transition to a charge-ordered phase, and the phase diagram obtained in this way is in excellent agreement with previous DMRG results. By analyzing the phonon propagator we extract the renormalized phonon frequency, and study how it first softens as the transition is approached and then subsequently hardens in the charge-ordered phase. We then show how anharmonic features develop in the phonon propagator, and how the interaction induces a sizable dispersion of the dressed phonon in the non-adiabatic regime.engPhonon softening and dispersion in the 1D Holstein model of spinless fermionsjournal articlehttp://dx.doi.org/10.1140/epjb/e2005-00112-9http://link.springer.comopen access538.9Su-schrieffer-heegerQuantum monte-carloOptical-obsorptionMaximum-entropyPhase-diagramSmall-polaronElectronSuperconductorsPerovskitesSystemsFísica de materialesFísica del estado sólido2211 Física del Estado Sólido