Azagra Rueda, DanielFerrera Cuesta, JuanLópez-Mesas Colomina, Fernando2023-06-202023-06-202006-11-010022-247X10.1016/j.jmaa.2005.10.048https://hdl.handle.net/20.500.14352/49821We establish a maximum principle for viscosity subsolutions and supersolutions of equations of the form u(t) + F(t, d(x)u) = 0, u(0, x) = u(0)(x), where u(0): M -> R is a bounded uniformly continuous function, M is a Riemannian manifold, and F: [0, infinity) x T*M -> R. This yields uniqueness of the viscosity solutions of such Hamilton-Jacobi equations.engA maximum principle for evolution Hamilton-Jacobi equations on Riemannian manifoldsjournal articlehttp://www.sciencedirect.com/science/article/pii/S0022247X05010309restricted access517.97514.764.2515.165Infinite dimensionsNonsmooth analysisHamilton-Jacobi equationsviscosity solutionsRiemannian manifoldsGeometría diferencialEcuaciones diferenciales1204.04 Geometría Diferencial1202.07 Ecuaciones en Diferencias