Daniilidis, A.Garrido Carballo, María IsabelJaramillo Aguado, Jesús ÁngelTapia García, Sebastián2025-12-042025-12-0420252330-000010.1090/btran/234https://hdl.handle.net/20.500.14352/128485A necessary and sufficient condition for the horofunction extension (X, d) [X comma d bar, superscript h] of a metric space (X, d) to be a compactification is hereby established. The condition clarifies previous results on proper metric spaces and geodesic spaces and yields the following characterization: a Banach space is Gromovcompactifiable under any renorming if and only if it does not contain an isomorphic copy of 1. In addition, it is shown that, up to an adequate renorming, every Banach space is Gromov-compactifiable. Therefore, the property of being Gromov-compactifiable is not invariant under bi-Lipschitz equivalence.engAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/Horofunction extension and metric compactificationsjournal articlehttps://doi.org/10.1090/btran/234open accessMetric spaceNormed spaceCompactificationHorofunction extensionl1-criteriumGeometría diferencialTopologíaAnálisis matemático12 Matemáticas