Mártil de la Plaza, IgnacioGonzález Díaz, Germán2023-06-202023-06-201999-07[1] Hasegawa, H., Akazawa, M., Ishii, H., Uraie, A., Iwadate, H. and Ohue, E., 1990, J. Vac. Sci. Technol. B, 8, 867. [2] Hasegawa, H., 1989, Proc. SPIE, 1144, 150. [3] Mui, D.S.L., Demirel, A.L., Strite, S., Wang, Z., Reed, J., Biswas, D. and Morkoç, C.H., 1993, J. Crystal Growth 127, 803–6. [4] Mui, D.S.L., Biswas, D., Reed, J., Demirel, A.L., Strite, S. and Morkoç, H., 1992, Appl. Phys. Lett. 60, 20. [5] Park, D-G., Chen, Z., Botchkarev, A.E., Noor, Mohammad S., and Morkoç, H., 1996, Phil. Mag. B, 74, 3. [6] Landheer, D., Rajesh, K., Masson, D., Hulse, J.E., Sproule, G.I. and Quance, T., 1998, J. Vac. Sci. Technol. A, 16, 5. [7] García, S., Mártil, I., González-Díaz, G. and Fernández, M., 1997, Semicond. Sci. Technol., 12, 1650. [8] Permiter, P.L. and Swanson, J.G., 1996, J. Electron. Mater., 25, 1506. [9] Redondo, E., Blanco, N., Mártil, I. and González-Díaz, G., 1999, Appl. Phys. Lett., 74, 991. [10] Redondo, E., Blanco, N., Mártil, I., González-Díaz, D., Peláez, R., Dueñas, S. and Castán, H., 1999, J. Vac. Sci. Technol. A, 17 at press. [11] García, S., Mártil, I., González-Díaz, G., Castán, E., Dueñas, S. and Fernández, M., 1998, J. Appl. Phys., 83, 332. [12] Nicollian, E.H. and Brews, J.R., 1982, Metal Oxide Semiconductor Physics and Technology (New York: Wiley). [13] Wang, Z., Mui, D.S.L., Demirel, A.L., Biswas, D., Reed, J. and Morkoç, H., 1992, Appl. Phys. Lett., 61, 1826. [14] Park, D-G., Wang, Z., Morkoç, H., Alterovitz, S.A., Smith, D.G. and Tsen, S-C.Y., 1998, J. Vac. Sci. Technol. B, 16, 3032. [15] Diatezua, D.M., Wang, Z., Park, D., Chen, Z., Rockett, A. and Morkoç, H., 1998, J. Vac. Sci. Technol. B, 16, 507. [16] Mui, D.S.L., Wang, Z. and Morkoç, H., 1993, Thin Solid Films, 231, 107–24. [17] Martínez, F., Mártil, I., González-Díaz, G., Selle, B. and Sieber, I., 1998, J. Non-Crystalline Solids, 523, 227–30. [18] Martínez, F.L., del Prado, Á., Bravo, D., López, F., Mártil, I. and González-Díaz, G., 1999, J. Vac. Sci. Technol. A, 17, at press.0268-124210.1088/0268-1242/14/7/307https://hdl.handle.net/20.500.14352/59279© IOP Publishing Ltd. The authors would like to acknowledge the technical assistance of CAI de Implantación Iónica from the Universidad Complutense of Madrid. This research was partially supported by the Spanish CYCIT under grant TIC 98-0740.Ex situ deposited SiNx:H/In0.53Ga0.47As metal-insulator-semiconductor devices, with a minimum of interface state density of 3.5 x 10(11) eV(-1) cm(-2) have been obtained by electron cyclotron resonance plasma method at a low substrate temperature (200 degrees C), after a rapid thermal annealing treatment. The effects of annealing temperature on interfacial and bull; electrical properties have been analysed using the C-V high-low frequency method and I-V measurements. The results show that, up to 600 degrees C, the annealing procedure gradually improves the interface properties of the devices. The frequency dispersion, the hysteresis and the interface trap density diminish, while the resistivity and the electrical breakdown field of the insulator film increase up to values of 8 x 10(15)Omega cm and 4 MV cm(-1), respectively. We explain this behaviour in terms of the thermal relaxation and the reconstruction of the SiNx:H lattice and its interface with the In0.53Ga0.47As. At higher annealing temperatures, a sharp degradation of the structure occurs.engGate quality of ex situ deposited Al/SiNx : H/n-In0.53Ga0.47As devices after rapid thermal annealingjournal articlehttp://dx.doi.org/10.1088/0268-1242/14/7/307http://iopscience.iop.org/open access537Insulator-Semiconductor StructuresElectron-Cyclotron-ResonanceLayers.ElectricidadElectrónica (Física)2202.03 Electricidad