Rodríguez Bernal, AníbalJiménez Casas, Ángela2023-06-202023-06-2020110022-247X10.1016/j.jmaa.2011.01.051https://hdl.handle.net/20.500.14352/42041We analyze the asymptotic behavior of the attractors of a parabolic problem when some reaction and potential terms are concentrated in a neighborhood of a portion Γ of the boundary and this neighborhood shrinks to Γ as a parameter ε goes to zero. We prove that the family of attractors is upper continuous at the ε=0.engSingular limit for a nonlinear parabolic equation with terms concentrating on the boundaryjournal articlehttp://0-www.sciencedirect.com.cisne.sim.ucm.es/science/journal/0022247Xopen access517.98Asymptotic behaviorAttractorSingular perturbationConcentrating integralsUpper semicontinuityAnálisis funcional y teoría de operadores