Ancochea Bermúdez, José MaríaGómez Martín, José Ramón2023-06-202023-06-201991https://hdl.handle.net/20.500.14352/60675In this paper we prove that in N9, the variety of complex nilpotent Lie algebras of dimension 9, there exists a unique irreducible component intersecting the open subset of all filiform Lie algebras of dimension 9. It is also proved that, unlike in dimension 8 [see J. M. Ancochea-Bermudez and M. Goze, Arch. Math. (Basel) 50 (1988), no. 6, 511–525; N9 contains no rigid filiform Lie algebras.Sobre el abierto de la variedad de las álgebras de Lie nilpotentes de dimensión 9, formado por las leyes filiformesbook partmetadata only access512.554.3Álgebra1201 Álgebra