Ivanov, M. V.Vignote, J. R.Álvarez Rodríguez, R.Meucci, A.Giusti, C.Udías Moinelo, José Manuel2023-06-182023-06-182016-07-141. J. A. Formaggio and G. P. Zeller, Rev. Mod. Phys. 84, 1307 (2012). 2. J. G. Morfin, J. Nieves, and J. T. Sobczyk, Adv. High Energy Phys. 2012, 934597 (2012). 3. L. Alvarez-Ruso, Y. Hayato, and J. Nieves, New J. Phys. 16, 075015 (2014). 4. O. Benhar, P. Huber, C. Mariani, and D. Meloni, arXiv:1501.06448. 5. F. Capuzzi, C. Giusti, and F. D. Pacati, Nucl. Phys. A 524, 681 (1991). 6. F. Capuzzi, C. Giusti, F. D. Pacati, and D. N. Kadrev, Ann. Phys. (NY, US) 317, 492 (2005). 7. A. Meucci, F. Capuzzi, C. Giusti, and F. D. Pacati, Phys. Rev. C 67, 054601 (2003). 8. A. Meucci, C. Giusti, and F. D. Pacati, Nucl. Phys. A 756, 359 (2005). 9. S. Boffi, C. Giusti, and F. D. Pacati, Phys. Rep. 226, 1 (1993). 10. A. Meucci, J. A. Caballero, C. Giusti, F. D. Pacati, and J. M. Udías, Phys. Rev. C 80, 024605 (2009). 11. A. Meucci, M. Vorabbi, C. Giusti, F. D. Pacati, and P. Finelli, Phys. Rev. C 87, 054620 (2013). 12. A. Meucci, M. B. Barbaro, J. A. Caballero, C. Giusti, and J. M. Udías, Phys. Rev. Lett. 107, 172501 (2011). 13. A. Meucci, C. Giusti, and F. D. Pacati, Nucl. Phys. A 739, 277 (2004). 14. A. Meucci, J. A. Caballero, C. Giusti, and J. M. Udías, Phys. Rev. C 83, 064614 (2011). 15. A. Meucci and C. Giusti, Phys. Rev. D 85, 093002 (2012). 16. A. Meucci, C. Giusti, and M. Vorabbi, Phys. Rev. D 88, 013006 (2013). 17. A. Meucci and C. Giusti, Phys. Rev. D 89, 117301 (2014). 18. A. Meucci, C. Giusti, and F. D. Pacati, Phys. Rev. D 84, 113003 (2011). 19. R. González-Jiménez, J. A. Caballero, A. Meucci, C. Giusti, M. B. Barbaro, M. V. Ivanov, and J. M. Udías, Phys. Rev. C 88, 025502 (2013). 20. A. Meucci and C. Giusti, Phys. Rev. D 89, 057302 (2014). 21. E. D. Cooper, S. Hama, B. C. Clark, and R. L. Mercer, Phys. Rev. C 47, 297 (1993). 22. E. D. Cooper, S. Hama, and B. C. Clark, Phys. Rev. C 80, 034605 (2009). 23. H. Wojciechowski, Int. J. Mod. Phys. E 25, 1650008 (2016). 24. C. J. Horowitz, Phys. Rev. C 31, 1340 (1985). 25. D. P. Murdock and C. J. Horowitz, Phys. Rev. C 35, 1442 (1987). 26. S. Hama, B. C. Clark, E. D. Cooper, H. S. Sherif, and R. L. Mercer, Phys. Rev. C 41, 2737 (1990). 27. O. Maxwell, Nucl. Phys. A 600, 509 (1996). 28. O. Maxwell, Nucl. Phys. A 638, 747 (1998). 29. Z. P. Li, G. C. Hillhouse, and J. Meng, Phys. Rev. C 77, 014001 (2008). 30. Z. P. Li, G. C. Hillhouse, and J. Meng, Phys. Rev. C 78, 014603 (2008). 31. C. R. Chinn, C. Elster, R. M. Thaler, and S. P. Weppner, Phys. Rev. C 51, 1418 (1995). 32. P. K. Deb and K. Amos, Phys. Rev. C 62, 024605 (2000). 33. E. J. Stephenson, R. C. Johnson, and F. Sammarruca, Phys. Rev. C 71, 014612 (2005). 34. H. Sakaguchi, H. Takeda, S. Toyama, M. Itoh, A. Yamagoshi, A. Tamii, M. Yosoi, H. Akimune, I. Daito, T. Inomata, T. Noro, and Y. Hosono, Phys. Rev. C 57, 1749 (1998). 35. J. A. Tjon and S. J. Wallace, Phys. Rev. C 32, 1667 (1985). 36. J. A. Tjon and S. J. Wallace, Phys. Rev. C 36, 1085 (1987). 37. N. Ottenstein, S. J. Wallace, and J. A. Tjon, Phys. Rev. C 38, 2272 (1988). 38. L. Rikus, K. Nakano, and H. V. Geramb, Nucl. Phys. A 414, 413 (1984). 39. L. Rikus and H. V. Geramb, Nucl. Phys. A 426, 496 (1984). 40. J. Zenihiro, H. Sakaguchi, T. Murakami, M. Yosoi, Y. Yasuda, S. Terashima, Y. Iwao, H. Takeda, M. Itoh, H. P. Yoshida, and M. Uchida, Phys. Rev. C 82, 044611 (2010). 41. S. Terashima, H. Sakaguchi, H. Takeda, T. Ishikawa, M. Itoh, T. Kawabata, T. Murakami, M. Uchida, Y. Yasuda, M. Yosoi, J. Zenihiro, H. P. Yoshida, T. Noro, T. Ishida, S. Asaji, and T. Yonemura, Phys. Rev. C 77, 024317 (2008). 42. K. Amos, P. Dortmans, H. Geramb, S. Karataglidis, and J. Raynnal, in Advances in Nuclear Physics, edited by J. Negele and E. Vogt (Springer, New York, 2002), Vol. 25, pp. 276–536. 43. P. K. Deb, K. Amos, and S. Karataglidis, Phys. Rev. C 62, 037601 (2000). 44. H. F. Arellano and H. V. von Geramb, Phys. Rev. C 66, 024602 (2002). 45. C. Elster, T. Cheon, E. F. Redish, and P. C. Tandy, Phys. Rev. C 41, 814 (1990). 46. H. F. Arellano, F. A. Brieva, W. G. Love, and K. Nakayama, Phys. Rev. C 43, 1875 (1991). 47. R. Xu, Z. Ma, E. N. E. van Dalen, and H. Müther, Phys. Rev. C 85, 034613 (2012). 48. M. Martini, M. Ericson, G. Chanfray, and J. Marteau, Phys. Rev. C 80, 065501 (2009). 49. M. Martini, M. Ericson, G. Chanfray, and J. Marteau, Phys. Rev. C 81, 045502 (2010). 50. M. Martini, M. Ericson, and G. Chanfray, Phys. Rev. C 84, 055502 (2011). 51. M. Martini and M. Ericson, Phys. Rev. C 87, 065501 (2013). 52. J. Nieves, I. R. Simo, and M. J. Vicente Vacas, Phys. Rev. C 83, 045501 (2011). 53. J. Nieves, I. Ruiz Simo, and M. J. Vicente Vacas, Phys. Lett. B 707, 72 (2012). 54. J. Nieves, I. Ruiz Simo, and M. J. Vicente Vacas, Phys. Lett. B 721, 90 (2013). 55. A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Phys. Rev. D 88, 032001 (2013). 56. A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Phys. Rev. D 82, 092005 (2010). 57. A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Phys. Rev. D 81, 092005 (2010). 58. A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Phys. Rev. D 91, 012004 (2015). 59. C. J. Horowitz, D. P. Murdoch, and B. D. Serot, in Computational Nuclear Physics I: Nuclear Structure, edited by K. Langanke, J. A. Maruhn, and S. E. Koonin (Springer-Verlag, Berlin, 1991), Chap. 7. 60. C. Horowitz and B. D. Serot, Nucl. Phys. A 368, 503 (1981). 61. H. D. Vries, C. D. Jager, and C. D. Vries, At. Data Nucl. Data Tables 36, 495 (1987). 62. M. V. Ivanov, J. R. Vignote, R. Alvarez-Rodriguez, and J. M. Udias, in Nuclear Theory, edited by A. Georgieva and N. Minkov (Heron, Sofia, 2011), Vol. 30, pp. 116–125; in Proceedings of the 30th International Workshop on Nuclear Theory (Rila Mountains, Bulgaria, 2011). 63. M. Sharma, M. Nagarajan, and P. Ring, Phys. Lett. B 312, 377 (1993). 64. M. M. Sharma, G. A. Lalazissis, W. Hillebrandt, and P. Ring, Phys. Rev. Lett. 72, 1431 (1994). 65. S. Terashima, Systematic study of neutron density distributions of Sn isotopes by proton elastic scattering, Ph.D. thesis, Kyoto University, 2008. 66. M. Ieiri, H. Sakaguchi, M. Nakamura, H. Sakamoto, H. Ogawa, M. Yosol, T. Ichihara, N. Isshiki, Y. Takeuchi, H. Togawa, T. Tsutsumi, S. Hirata, T. Nakano, S. Kobayashi, T. Noro, and H. Ikegami, Nucl. Instrum. Methods Phys. Res., Sect. A 257, 253 (1987). 67. H. O. Meyer, P. Schwandt, W. W. Jacobs, and J. R. Hall, Phys. Rev. C 27, 459 (1983). 68. H. O. Meyer, P. Schwandt, G. L. Moake, and P. P. Singh, Phys. Rev. C 23, 616 (1981). 69. H. O. Meyer, P. Schwandt, R. Abegg, C. A. Miller, K. P. Jackson, S. Yen, G. Gaillard, M. Hugi, R. Helmer, D. Frekers, and A. Saxena, Phys. Rev. C 37, 544 (1988). 70. A. Okamoto, T. Yamagata, H. Akimune, M. Fujiwara, K. Fushimi, M. B. Greenfield, K. Hara, K. Y. Hara, H. Hashimoto, R. Hayami, K. Kawase, M. Kinoshita, K. Nakanishi, S. Nakayama, M. Tanaka, H. Utsunomiya, N. Warashina, and M. Yosoi, Phys. Rev. C 81, 054604 (2010). 71. K. W. Jones, Elastic and inelastic scattering of polarized protons from carbon-12 at 400, 600, and 700 MeV, Ph.D. thesis, Los Alamos National Laboratory, 1984. 72. G. W. Hoffmann, M. L. Barlett, D. Ciskowski, G. Pauletta, M. Purcell, L. Ray, J. F. Amann, J. J. Jarmer, K. W. Jones, S. Penttilä, N. Tanaka, M. M. Gazzaly, J. R. Comfort, B. C. Clark, and S. Hama, Phys. Rev. C 41, 1651 (1990). 73. G. S. Blanpied, G. W. Hoffmann, M. L. Barlett, J. A. McGill, S. J. Greene, L. Ray, O. B. Van Dyck, J. Amann, and H. A. Thiessen, Phys. Rev. C 23, 2599 (1981). 74. L. Ray, G. W. Hoffmann, G. S. Blanpied, W. R. Coker, and R. P. Liljestrand, Phys. Rev. C 18, 1756 (1978). 75. R. Bertini, R. Beurtey, F. Brochard, G. Bruge, H. Catz, A. Chaumeaux, J. Durand, J. Faivre, J. Fontaine, D. Garreta, C. Gustafsson, D. Hendrie, F. Hibou, D. Legrand, J. Saudinos, and J. Thiron, Phys. Lett. B 45, 119 (1973). 76. I. Sick and J. McCarthy, Nucl. Phys. A 150, 631 (1970). 77. W. Reuter, G. Fricke, K. Merle, and H. Miska, Phys. Rev. C 26, 806 (1982). 78. International Network of Nuclear Reaction Data Centres (NRDC), compilation of experimental nuclear reaction data (EXFOR/CSISRS), http://www-nds.iaea.org/exfor/exfor.htm and http://www.nndc.bnl.gov/exfor/exfor.htm. 79. S. Boffi, C. Giusti, F. D. Pacati, and M. Radici, Electromagnetic Response of Atomic Nuclei, Oxford Studies in Nuclear Physics, Vol. 20 (Clarendon, Oxford, 1996). 80. J. M. Udías, P. Sarriguren, E. Moya de Guerra, E. Garrido, and J. A. Caballero, Phys. Rev. C 48, 2731 (1993). 81. A. Meucci, C. Giusti, and F. D. Pacati, Phys. Rev. C 64, 014604 (2001). 82. A. Meucci, C. Giusti, and F. D. Pacati, Phys. Rev. C 64, 064615 (2001). 83. A. Meucci, Phys. Rev. C 65, 044601 (2002). 84. M. Radici, A. Meucci, and W. H. Dickhoff, Eur. Phys. J. A 17, 65 (2003). 85. C. Giusti, A. Meucci, F. D. Pacati, G. Co', and V. De Donno, Phys. Rev. C 84, 024615 (2011). 86. C. Maieron, M. C. Martinez, J. A. Caballero, and J. M. Udías, Phys. Rev. C 68, 048501 (2003). 87. J. A. Caballero, J. E. Amaro, M. B. Barbaro, T. W. Donnelly, C. Maieron, and J. M. Udías, Phys. Rev. Lett. 95, 252502 (2005). 88. Y. Horikawa, F. Lenz, and N. C. Mukhopadhyay, Phys. Rev. C 22, 1680 (1980). 89. R. M. Sealock, K. L. Giovanetti, S. T. Thornton, Z. E. Meziani, O. A. Rondon-Aramayo, S. Auffret, J.-P. Chen, D. G. Christian, D. B. Day, J. S. McCarthy, R. C. Minehart, L. C. Dennis, K. W. Kemper, B. A. Mecking, and J. Morgenstern, Phys. Rev. Lett. 62, 1350 (1989). 90. P. Barreau, M. Bernheim, J. Duclos, J. Finn, Z. E. Meziani, J. Morgenstern, J. Mougey, D. Royer, B. Saghai, D. Tarnowski, S. Turck-Chieze, M. Brussel, G. P. Capitani, E. De Sanctis, S. Frullani, F. Garibaldi, D. B. Isabelle, E. Jans, I. Sick, and P. D. Zimmerman, Nucl. Phys. A 402, 515 (1983). 91. D. B. Day, J. S. McCarthy, Z. E. Meziani, R. Minehart, R. Sealock, S. T. Thornton, J. Jourdan, I. Sick, B. W. Filippone, R. D. McKeown, R. G. Milner, D. H. Potterveld, and Z. Szalata, Phys. Rev. C 48, 1849 (1993). 92. O. Benhar, D. Day, and I. Sick, Rev. Mod. Phys. 80, 189 (2008). 93. http://faculty.virginia.edu/qes-archive/index.html. 94. C. Maieron, T. W. Donnelly, and I. Sick, Phys. Rev. C 65, 025502 (2002). 95. T. W. Donnelly and I. Sick, Phys. Rev. C 60, 065502 (1999). 96. T. W. Donnelly and I. Sick, Phys. Rev. Lett. 82, 3212 (1999). 97. M. B. Barbaro, R. Cenni, A. De Pace, T. W. Donnelly, and A. Molinari, Nucl. Phys. A 643, 137 (1998). 98. J. A. Caballero, Phys. Rev. C 74, 015502 (2006). 99. J. E. Amaro, M. B. Barbaro, J. A. Caballero, and T. W. Donnelly, Phys. Rev. C 73, 035503 (2006). 100. A. N. Antonov, M. V. Ivanov, M. B. Barbaro, J. A. Caballero, E. Moya de Guerra, and M. K. Gaidarov, Phys. Rev. C 75, 064617 (2007). 101. O. Benhar and G. Veneziano, Phys. Lett. B 702, 433 (2011). 102. A. M. Ankowski, Phys. Rev. C 86, 024616 (2012). 103. V. Bernard, L. Elouadrhiri, and U. G. Meissner, J. Phys. G 28, R1 (2002). 104. A. Bodek, S. Avvakumov, R. Bradford, and H. Budd, Eur. Phys. J. C 53, 349 (2008). 105. A. De Pace, M. Nardi, W. M. Alberico, T. Donnelly, and A. Molinari, Nucl. Phys. A 741, 249 (2004). 106. J. E. Amaro, M. B. Barbaro, J. A. Caballero, T. W. Donnelly, and C. F. Williamson, Phys. Lett. B 696, 151 (2011). 107. J. E. Amaro, M. B. Barbaro, J. A. Caballero, T. W. Donnelly, and J. M. Udías, Phys. Rev. D 84, 033004 (2011). 108. J. E. Amaro, M. B. Barbaro, J. A. Caballero, and T. W. Donnelly, Phys. Rev. Lett. 108, 152501 (2012). 109. A. Bodek, H. Budd, and M. Christy, Eur. Phys. J. C 71, 1 (2011). 110. T. Golan, K. M. Graczyk, C. Juszczak, and J. T. Sobczyk, Phys. Rev. C 88, 024612 (2013). 111. T. Leitner, O. Buss, L. Alvarez-Ruso, and U. Mosel, Phys. Rev. C 79, 034601 (2009). 112. T. Leitner and U. Mosel, Phys. Rev. C 81, 064614 (2010). 113. A. M. Ankowski and O. Benhar, Phys. Rev. C 83, 054616 (2011). 114. E. Fernandez Martinez and D. Meloni, Phys. Lett. B 697, 477 (2011).2469-998510.1103/PhysRevC.94.014608https://hdl.handle.net/20.500.14352/24590©2016 American Physical Society. This work was partially supported by DGI (Spain) (Grant No. FPA2013-41267), by the Spanish Consolider-Ingenio 2000 program CPAN, and by the Bulgarian National Science Fund under Contracts No. DFNI-T02/19 and No. DFNI-E02/6. M.V.I. is grateful for the warm hospitality given by the UCM and for financial support during his stay there from the SiNuRSE action within the ENSAR European project.Optical potentials provide critical input for calculations on a wide variety of nuclear reactions, in particular, for neutrino-nucleus reactions, which are of great interest in the light of the new neutrino oscillation experiments. We present the global relativistic folding optical potential (GRFOP) fits to elastic proton scattering data from C-12 nucleus at energies between 20 and 1040 MeV. We estimate observables, such as the differential cross section, the analyzing power, and the spin rotation parameter, in elastic proton scattering within the relativistic impulse approximation. The new GRFOP potential is employed within the relativistic Green's function model for inclusive quasielastic electron scattering and for (anti) neutrino-nucleus scattering at MiniBooNE kinematics.engGlobal relativistic folding optical potential and the relativistic Green's function modeljournal articlehttp://dx.doi.org/10.1103/PhysRevC.94.014608http://journals.aps.org/open access539.1Electron nucleus scatteringProton elastic scatteringLorentz covariant representationNeutrino cross sectionsFinal state interactionNn interactionImpulse approximationPolarized protonsField-theoryC-12.Física nuclear2207 Física Atómica y Nuclear