Díaz-Guerra Viejo, CarlosPiqueras de Noriega, Javier2023-06-202023-06-201997-02[1] V.N. Andreev, B.P. Zakharchenya, S.E. Nikitin, F.A. Chudnovskii, E.B. Shadim, E.M. Ster JETP Lett., 46 (1987), p. 492 [2] B.J. Luff, P.D. Townsend, J. Osborne J. Phys. D: Appl. Phys., 21 (1988), p. 663 [3] Ch.B. Lushchik, I.L. Kuusmann, E.Kh. Feldbakh, P.Kh. Liblik, T.I. Savikhina, I.A. Meriloo Sov. Phys. Solid State, 29 (1987), p. 209 [4] J. Piqueras, P. Fernández, J.L. Vicent Appl. Phys. Lett., 57 (1990), p. 2722 [5] V.G. Stankevich, N.Yu. Svechnikov, K.V. Kaznacheev, R. Kink, I.L. Kuusman, E.Kh. Feldbach, G. Zimmerer, T. Kloibe, A.A. Zhokhov, G.A. Emelchenko, M.A. Kalyagin, V.Ya. Kosyev J. Lumin., 48–49 (1991), p. 845 [6]Z. Barkay, J. Azoulay, Y. Lereah, U. Dai, N. Hess, D. Racah, E. Grünbaum, G. Deutscher Appl. Phys. Lett., 57 (1990), p. 1808 [7] F. Domínguez-Adame, P. Fernández, J. Piqueras, P. Prieto, C. Barrero, M.E. Gómez J. Appl. Phys., 71 (1992), p. 2778 [8] A. Remón, J.A. García, P. Gómez, J. Piqueras, F. Domínguez-Adame Phys. Status Solidi (a), 136 (1993), p. K127 [9] P. Gómez, J. Jiménez, P. Martín, J. Piqueras, F. Domínguez-Adame J. Appl. Phys., 74 (1993), p. 6289 [10] I. Fugol, C. Politis, A. Ratner, V. Samovarov, V. Zhuravlev J. Lumin., 62 (1994), p. 291 [11] V.G. Stankevich, N.Yu. Svechnikov, K.V. Kaznacheev, M. Kamada, S. Tanaka, S. Hirose, R. Kink, G.A. Emelchenko, S.G. Karabachev, T. Wolf, H. Berger, F. Levy Phys. Rev. B, 47 (1993), p. 1024 [12] P. Gómez, J. Piqueras, C. Opagiste Solid State Commun., 96 (1995), p. 45 [13] P.R. Fletcher, C. Leach J. Mater. Sci., 30 (1995), p. 2765 [14] P. Gómez, J. Piqueras, M.J. Sayagués, J.M. González-Calbet Solid State Commun., 96 (1995), p. 45 [15] A. Torres, J. Jiménez, P. Gómez, J. Piqueras Mater. Res. Soc. Symp. Proc., 373 (1995), p. 431 [16] C. Díaz-Guerra, J. Piqueras, C. Opagiste Physica C, 259 (1996), p. 121 [17] Z. Barkay, G. Deutscher, E. Grünbaum, B. Dwir Appl. Phys. Lett., 61 (1992), p. 3050 [18] P.R. Fletcher, C. Leach J. Mater. Sci., 28 (1993), p. 6744 [19] D.W. Cooke, H. Rempp, Z. Fisk, J.L. Smith, M.S. Jahan Phys. Rev. B, 36 (1987), p. 2287 [20] M. Roth, A. Halperin, S. Katz Solid State Commun., 67 (1988), p. 105 [21] S. Katz, M. Roth, J. Golben, M. Vlasse J. Appl. Phys., 75 (1994), p. 2712 [22] P. Krishnaraj, M. Levlovic, N.G. Eror, U. Balachandran Physica C, 246 (1995), p. 271 [23] K. Kanaya, S. Okayama J. Phys. D: Appl. Phys., 5 (1972), p. 43 [24] V.G. Bessergenev, A.A. Kamarzin, H. Boch, M.O. Klimenkov Supercond. Sci. Technol., 5 (1992), p. 440 [25] S. Takekawa, H. Nozaki, A. Umezono, K. Kosuda, M. Kobayashi J. Cryst. Growth, 92 (1988), p. 687 [26] C. Díaz-Guerra, J. Piqueras J. Appl. Phys., 80 (1996), p. 998 [27] P. Gómez, J. Piqueras, A. Remón, J.A. García, J. Jiménez, A. Torres Phys. Status Solidi (a), 157 (1996), p. 469 [28] J.A. García, A. Remón, J. Piqueras Phys. Status Solidi (a), 144 (1994), p. 217 [29] Y. Shimakawa Physica C, 204 (1993), p. 247 [30] I. Van Driessche, S. Cattoir, S. Hoste Appl. Supercond., 2 (1994), p. 101 [31] P.D. Han, D.A. Payne J. Cryst. Growth, 104 (1990), p. 201 [32] S. Kishida, H. Tokutaka, S. Nakanishi, H. Fujimoto, K. Nishimori, N. Ishihara, Y. Watanabe, W. Futo J. Cryst. Growth, 99 (1990), p. 937 [33] N. Cabrera, R.V. Coleman J.J. Gilman (Ed.), The Art and Science of Growing Crystals, Wiley, New York (1966) [34] J. Kircher, J. Humlícek, M. Garriga, M. Cardona, D. Fuchs, H.-U. Habermaier, O. Jepsen, S. Gopalan, O.K. Andersen, Y. Fang, U. Welp, K.G. Vandervoort, G.W. Crabtree Physica C, 192 (1992), p. 473 [35] M. Garriga, J. Humlícek, J. Barth, R.L. Johnson, M. Cardona J. Opt. Soc. Am. B, 6 (1989), p. 470 [36] I. Fugol, G. Saemann-Ischenko, V. Samovarov, Yu. Rybalko, V. Zhuravlev, Y. Ströbel, B. Holzapfel, P. Berberich Solid State Commun., 80 (1991), p. 201 [37] I. Fugol, V. Samovarov, A. Ratner, V. Zhuravlev, G. Saemann-Ischenko, M. Lippert, B. Holzapfel Physica C, 216 (1993), p. 391 [38] I. Fugol, V. Samovarov, A. Ratner, V. Zhuravlev, G. Saemann-Ischenko, B. Holzapfel, O. Meyer Solid State Commun., 86 (1993), p. 385 [39] J.M. Ginder, M.G. Roe, Y. Song, R.P. McCall, J.R. Gaines, E. Ehrenfreund, A.J. Epstein Phys. Rev. B, 37 (1988), p. 7506 [40] J.M. Leng, J.M. Ginder, W.E. Farneth, S.I. Shah, A.J. Epstein Phys. Rev. B, 43 (1991), p. 10582 [41] W. Zhang, K.H. Bennemann Phys. Lett. A, 196 (1994), p. 1130921-453410.1016/S0921-4534(96)00687-9https://hdl.handle.net/20.500.14352/59201© 1997 Published by Elsevier B.V. This work was supported by DGICYT (Project PB 93-1256) and by CICYT (Project 95-1184-E). C.D.G. acknowledges MEC for a FPI research grant.Cathodoluminescence (CL) microscopy and spectroscopy in the scanning electron microscope have been applied to the microcharacterization of superconducting Bi2Sr2CaCu2O8+x single crystals. CL spectra representative of the samples at macroscopic level, exhibit at low temperature two well resolved emission bands, centered at about 2.90 and 2.35 eV respectively, related to electronic processes in the oxygen sublattice. Panchromatic CL images reveal that regions with enhanced intensity usually correspond with growth layers or other topographic features of the crystals. CL spectra from the mentioned regions show a relative increase of the local oxygen deficiency related 2.3-2.4 eV emission band. The complex character of this band is revealed by CL spectroscopy, and by CL monochromatic images that relate certain peaks observed in the spectra to specific luminescent areas. Comparison of the present observations with previous luminescence studies of other high temperature superconductors, indicates that a possible origin of the 2.3-2.4 eV CL emission band lies in the Cu-O planes, common to these materials.engCathodoluminescence microscopy and spectroscopy of superconducting Bi_2Sr_2CaCu_2O_(8+x) single crystalsjournal articlehttp://dx.doi.org/10.1016/S0921-4534(96)00687-9http://www.sciencedirect.comrestricted access538.9Física de materiales