Peña Martínez, JuanMinghui, LiCano Ortiz, AnaGarcía-Fernández, SaraRosales Conrado, Noelia2025-08-182025-08-182025Peña-Martínez, J., Li, M., Cano-Ortiz, A., García-Fernández, S., & Rosales-Conrado, N. (2025). Reimagining Chemistry Education for Pre-Service Teachers Through TikTok, News Media, and Digital Portfolios. Applied Sciences, 15(14), 7711. https://doi.org/10.3390/app1514771110.3390/app15147711https://hdl.handle.net/20.500.14352/123168Referencias bibliográficas: • UN Environment. Global Chemicals Outlook II. From Legacies to Innovative Solutions: Implementing the 2030 Agenda for Sustainable Development. 2019. Available online: https://www.unep.org/resources/report/global-chemicals-outlook-ii-legacies-innovative-solutions (accessed on 2 June 2025). • Guerris, M.; Cuadros, J.; González-Sabaté, L.; Serrano, V. Describing the public perception of chemistry on Twitter. Chem. Educ. Res. Pract. 2020, 21, 989–999. [Google Scholar] [CrossRef] • Avargil, S.; Kohen, Z.; Dori, Y.J. Trends and perceptions of choosing chemistry as a major and a career. Chem. Educ. Res. Pract. 2020, 21, 668–684. [Google Scholar] [CrossRef] • Ardura, D.; Pérez-Bitrián, A. The effect of motivation on the choice of chemistry in secondary schools: Adaptation and validation of the Science Motivation Questionnaire II to Spanish students. Chem. Educ. Res. Pract. 2018, 19, 905–918. [Google Scholar] [CrossRef] • Gulacar, O.; Zowada, C.; Burke, S.; Nabavizadeh, A.; Bernardo, A.; Eilks, I. Integration of a sustainability-oriented socio-scientific issue into the general chemistry curriculum: Examining the effects on student motivation and self-efficacy. Sustain. Chem. Pharm. 2020, 15, 100232. [Google Scholar] [CrossRef] • Chowdhury, P.; Rankhumise, M.P.; Simelane-Mnisi, S.; On Mafa-Theledi, O.N. Attitude and performance: A universal co-relation, example from a chemistry classroom. J. Turk. Sci. Educ. 2020, 17, 603–616. [Google Scholar] [CrossRef] • Nidup, Y.; Zangmo, S.; Rinzin, Y.; Yuden, S.; Subba, H.R.; Rai, J. The perception of class X students of Phuentsholing Higher Secondary School towards Chemistry. Anatol. J. Educ. 2021, 6, 51–66. [Google Scholar] [CrossRef] • Chichekian, T.; Hua, O.; Shore, B.M. Chemistry professors’ perceptions of undergraduate learning. Can. J. Scholarsh. Teach. Learn. 2018, 9, n1. [Google Scholar] [CrossRef] • George, A.; Zowada, C.; Eilks, I.; Gulacar, O. Exploring chemistry professors’ methods of highlighting the relevancy of chemistry: Opportunities, obstacles, and suggestions to improve students’ motivation in science classrooms. Educ. Sci. 2021, 11, 13. [Google Scholar] [CrossRef] • Watkins, J.; Mazur, E. Retaining students in science, technology, engineering, and mathematics (STEM) majors. J. Coll. Sci. Teach. 2013, 42, 36–41. [Google Scholar] • Kruit, P.M.; Bredeweg, B.; Nieuwelink, H. Enhancing students’ argumentation skills, content knowledge, and Nature of Science understanding through a web-based educational instrument in the context of socio-scientific issues. Int. J. Sci. Educ. 2025, 47, 749–768. [Google Scholar] [CrossRef] • Ambrogi, P.; Eilks, I. Lessons learned from a case study on teaching the socioscientific issue of ethanol, used as an ingredient of sanitizers, to promote students’ learning of and about chemistry during the COVID-19 pandemic. Chem. Teach. Int. 2023, 5, 481–492. [Google Scholar] [CrossRef] • Sari, R.M.; Wiyarsi, A. Inquiry learning using local socio-scientific issues as context to improve students’ chemical literacy. In Proceedings of the 7th International Conference on Research, Implementation, and Education of Mathematics and Sciences (ICRIEMS 2020), Yogyakarta, Indonesia, 25–26 September 2020. [Google Scholar] [CrossRef] • Rusek, M.; Chytrý, V.; Honskusová, L. The effect of lower-secondary chemistry education: Students’ understanding to the nature of chemistry and their attitudes. J. Balt. Sci. Educ. 2019, 18, 286–299. [Google Scholar] [CrossRef] • Stuckey, M.; Eilks, I. Increasing student motivation and the perception of chemistry’s relevance in the classroom by learning about tattooing from a chemical and societal view. Chem. Educ. Res. Pract. 2014, 15, 156–167. [Google Scholar] [CrossRef] • Sadler, T.D. Informal reasoning regarding socioscientific issues: A critical review of research. J. Res. Sci. Teach. 2004, 41, 513–536. [Google Scholar] [CrossRef] • López-Fernández, M.M.; González-García, F.; Franco-Mariscal, A.J. How can socio-scientific issues help develop critical thinking in chemistry education? A reflection on the problem of plastics. J. Chem. Educ. 2022, 99, 3435–3442. [Google Scholar] [CrossRef] • Zeidler, D.L.; Herman, B.C.; Sadler, T.D. New directions in socioscientific issues research. Discip. Interdiscip. Sci. Educ. Res. 2019, 1, 11. [Google Scholar] [CrossRef] • Ke, L.; Sadler, T.D.; Zangori, L.; Friedrichsen, P.J. Students’ perceptions of socioscientific issue-based learning and their appropriation of epistemic tools for systems thinking. Int. J. Sci. Educ. 2020, 42, 1339–1361. [Google Scholar] [CrossRef] • Rahayu, S. Socio-scientific issues (SSI) in chemistry education: Enhancing both students’ chemical literacy & transferable skills. J. Phys. Conf. Ser. 2019, 1227, 012008. [Google Scholar] [CrossRef] • Sadler, T.D.; Barab, S.A.; Scott, B. What do students gain by engaging in socioscientific inquiry? Res. Sci. Educ. 2007, 37, 371–391. [Google Scholar] [CrossRef] • Viehmann, C.; Fernández Cárdenas, J.M.; Reynaga Peña, C.G. The use of socioscientific issues in science lessons: A scoping review. Sustainability 2024, 16, 5827. [Google Scholar] [CrossRef] • Bencze, L.; Pouliot, C.; Pedretti, E.; Simonneaux, L.; Simonneaux, J.; Zeidler, D. SAQ, SSI and STSE education: Defending and extending “science-in-context”. Cult. Stud. Sci. Educ. 2020, 15, 825–851. [Google Scholar] [CrossRef] • Suparman, A.R.; Rohaeti, E.; Wening, S. Development of attitude assessment instruments towards socio-scientific issues in chemistry learning. Eur. J. Educ. Res. 2022, 11, 1947–1958. [Google Scholar] [CrossRef] • Marks, R.; Eilks, I. Promoting scientific literacy using a sociocritical and problem-oriented approach to chemistry teaching: Concept, examples, experiences. Int. J. Environ. Sci. Educ. 2009, 4, 131–145. [Google Scholar] • Dimopoulos, K.; Koulaidis, V. Science and technology education for citizenship: The potential role of the press. Sci. Educ. 2003, 87, 241–256. [Google Scholar] [CrossRef] • Ginosar, A.; Tal, T. Teaching journalistic texts in science classes: The importance of media literacy. J. Sci. Educ. Technol. 2018, 27, 205–214. [Google Scholar] [CrossRef] • Arthamena, V.; Ayubi, M.; Atun, S.; Suyanta, S. Use of socio-scientific issues in chemistry learning. J. Penelit. Pendidik. IPA 2024, 10, 38–46. [Google Scholar] [CrossRef] • Jarman, R.; MClune, B. A survey of the use of newspapers in science instruction by secondary teachers in Northern Ireland. Int. J. Sci. Educ. 2002, 24, 997–1020. [Google Scholar] [CrossRef] • Klosterman, M.L.; Sadler, T.D.; Brown, J. Science teachers’ use of mass media to address socio-scientific & sustainability issues. Res. Sci. Educ. 2012, 42, 51–74. [Google Scholar] [CrossRef] • Palma-Jiménez, M.; Cebrián-Robles, D.; Blanco-López, A. Impact of instruction based on a validated learning progression on the argumentation competence of preservice elementary science teachers. Sci. Educ. 2025, 34, 423–455. [Google Scholar] [CrossRef] • Fensham, P. Increasing the relevance of science and technology education for all students in the 21st century. Sci. Educ. Int. 2004, 15, 7–26. [Google Scholar] • Pitiporntapin, S.; Yutakom, N.; Sadler, T.D. Thai pre-service science teachers’ struggles in using socio-scientific issues (SSIs) during practicum. Asia-Pac. Forum Sci. Learn. Teach. 2016, 17, 1–20. [Google Scholar] • TikTok, version 25.7.3; [Mobile App]; ByteDance Ltd.: Beijing, China, 2022. Available online: https://www.tiktok.com (accessed on 30 November 2022). • Archila, P.A.; Truscott de Mejía, A.M.; Restrepo, S. Using drama to enrich students’ argumentation about genetically modified foods. Sci. Educ. 2023, 32, 635–668. [Google Scholar] [CrossRef] • Cha, J.; Kim, H.B.; Kan, S.Y.; Foo, W.Y.; Low, X.Y.; Ow, J.Y.; Chandran, P.D.B.; Lee, G.E.; Yong, J.W.H.; Chia, P.W. Integrating organic chemical-based socio-scientific issues comics into chemistry classroom: Expanding chemists’ toolbox. Green Chem. Lett. Rev. 2021, 14, 689–699. [Google Scholar] [CrossRef] • Aloraini, S. The impact of using multimedia on students’ academic achievement in the College of Education at King Saud University. J. King Saud Univ. Lang. Transl. 2012, 24, 75–82. [Google Scholar] [CrossRef] • Sausan, I.; Saputro, S.; Indriyanti, N.Y. A new chemistry multimedia: How can it help junior high school students create a good impression? Int. J. Instr. 2020, 13, 457–476. [Google Scholar] [CrossRef] • Glenn, C.D.; Odeleye, O.O. Exploring factors within an introductory course that influence students’ perception of chemistry. Chem. Educ. Res. Pract. 2024, 25, 775–785. [Google Scholar] [CrossRef] • Torre, E.M. Training university teachers on the use of the ePortfolio in teaching and assessment. Int. J. ePortfolio 2019, 9, 97–110. [Google Scholar] • Paulson, F.L.; Paulson, P.R.; Meyer, C.A. What makes a portfolio a portfolio? Educ. Leadersh. 1991, 48, 60–63. [Google Scholar] • Arter, J.A.; Spandel, V. Using portfolios of student work in instruction and assessment. Educ. Meas. Issues Pract. 1992, 11, 36–44. [Google Scholar] [CrossRef] • Johnson, R.; Mims-Cox, J.S.; Doyle-Nichols, A. Developing Portfolios in Education: A Guide to Reflection, Inquiry, and Assessment; SAGE Publications: Thousand Oaks, CA, USA, 2010. [Google Scholar]Mogas, J.; Cea Álvarez, A.; Pazos-Justo, C. The contribution of digital portfolios to higher education students’ autonomy and digital competence. Educ. Sci. 2023, 13, 829. [Google Scholar] [CrossRef] • Hinojosa-Pareja, E.F.; Gutiérrez-Santiuste, E.; Gámiz-Sánchez, V. Construction and validation of a questionnaire on e-Portfolios in higher education (QEPHE). Int. J. Res. Method Educ. 2021, 44, 53–66. [Google Scholar] [CrossRef] • Faria, E.R.; Buttros Gattolin, S.R. The use of hypertext in classes of English as a foreign language. Rev. Linguasagem 2018, 29, 1–16. [Google Scholar] • Lambe, J.; McNair, V.; Smith, R. Special educational needs, e-learning and the reflective e-portfolio: Implications for developing and assessing competence in pre-service education. J. Educ. Teach. 2013, 39, 181–196. [Google Scholar] [CrossRef] • Zinger, L.; Sinclair, A. Starting an ePortfolio: A multi-disciplinary approach. Contemp. Issues Educ. Res. (CIER) 2014, 7, 249–252. [Google Scholar] [CrossRef] • Abrami, P.; Barrett, H. Directions for research and development on electronic portfolios. Can. J. Learn. Technol. 2005, 31, n3. [Google Scholar] [CrossRef] • Lopez-Fernandez, O.; Rodriguez-Illera, J.L. Investigating university students’ adaptation to a digital learner course portfolio. Comput. Educ. 2009, 52, 608–616. [Google Scholar] [CrossRef] • Mishra, P.; Koehler, M.J. Technological pedagogical content knowledge: A framework for teacher knowledge. Teach. Coll. Rec. 2006, 108, 1017–1054. [Google Scholar] [CrossRef] • Koehler, M.J.; Mishra, P.; Yahya, K. Tracing the development of teacher knowledge in a design seminar: Integrating content, pedagogy and technology. Comput. Educ. 2007, 49, 740–762. [Google Scholar] [CrossRef] • Shulman, L.S. Those who understand: Knowledge growth in teaching. Educ. Res. 1986, 15, 4–14. [Google Scholar] [CrossRef] • Jimoyiannis, A. Designing and implementing an integrated technological pedagogical science knowledge framework for science teachers professional development. Comput. Educ. 2010, 55, 1259–1269. [Google Scholar] [CrossRef] • Chittleborough, G. Learning how to teach chemistry with technology: Pre-service teachers’ experiences with integrating technology into their learning and teaching. J. Sci. Teach. Educ. 2014, 25, 373–393. [Google Scholar] [CrossRef] • Pilten, P.; Pilten, G.; Sahinkaya, N. The effect of ICT assisted Project Based Learning approach on prospective ICT integration skills of teacher candidates. J. Educ. Train. Stud. 2017, 5, 135–147. [Google Scholar] [CrossRef] • Webb, M.; Cox, M. A review of pedagogy related to Information and Communications Technology. Technology. Pedagog. Educ. 2004, 13, 235–286. [Google Scholar] [CrossRef] • Hernández-Ramos, J.; Pernaa, J.; Cáceres-Jensen, L.; Rodríguez-Becerra, J. The effects of using socio-scientific issues and technology in Problem-Based Learning: A systematic review. Educ. Sci. 2021, 11, 640. [Google Scholar] [CrossRef] • Redecker, C.; Punie, Y. European Framework for the Digital Competence of Educators: DigCompEdu; Publications Office: Luxembourg, 2017; Available online: https://data.europa.eu/doi/10.2760/159770 (accessed on 4 June 2025). • Ferrero, C. ¿Hay que lavar la ropa nueva antes de usarla? [Should New Clothes Be Washed Before Wearing Them?]; El País: Madrid, Spain, 2014; Available online: https://smoda.elpais.com/moda/hay-que-lavar-la-ropa-nueva-antes-de-usarla/ (accessed on 8 November 2022). • Oliveras, B.; Sanmartí, N. Lectura crítica, una herramienta para mejorar el aprendizaje de las ciencias. In Proceedings of the Enseñanza de las Ciencias, Número Extra VIII Congreso Internacional sobre Investigación en Didáctica de las Ciencias, Barcelona, Spain, 2–5 September 2009; pp. 926–930. Available online: https://raco.cat/index.php/Ensenanza/article/view/293868 (accessed on 24 June 2021). • Balocchi, E.; Modak, B.; Martínez-M, M.; Padilla, K.; Reyes-C, F.; Garritz, A. Aprendizaje cooperativo del concepto ‘cantidad de sustancia’ con base en la teoría atómica de Dalton y la reacción química. Parte I. El aprendizaje cooperativo. Anexo: Cuadernillo ‘La reacción química y su representación’. Educación Química 2005, 16, 469–485. [Google Scholar] [CrossRef] • Google LLC. Google Sites. Available online: https://sites.google.com (accessed on 30 November 2022). • eXeLearning, Version 2.7; Available online: https://exelearning.net (accessed on 30 November 2022). • Adobe. PDF (Portable Document Format). Available online: https://www.adobe.com/acrobat/about-adobe-pdf.html (accessed on 30 November 2022). • Canva; Canva Pty Ltd. Available online: https://www.canva.com (accessed on 30 November 2022). • Wix.com Ltd. Wix. Available online: https://www.wix.com (accessed on 30 November 2022). • Kolstø, S. Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Sci. Educ. 2001, 85, 291–310. [Google Scholar] [CrossRef] • Gilbert, J.K. On the nature of “context” in chemical education. Int. J. Sci. Educ. 2006, 28, 957–976. [Google Scholar] [CrossRef] • Priyadi, O.D.; Mas’ud, M.I.; Rohaeti, E. The role of socioscientific issues (SSI) in chemistry education and the challenges of implementing socioscientific issues (SSI) in Indonesia: A systematic literature review. Int. J. Relig. 2025, 6, 326–338. [Google Scholar] [CrossRef] • Occelli, M.; Garcia Romano, L.; Valeiras, N. Aprendizaje colaborativo de cuestiones sociocientíficas en ambientes virtuales: Estudio de una experiencia de formación docente. Rev. Educ. Distancia (RED) 2022, 22, 70. [Google Scholar] [CrossRef] • Jahnke, I.; Lee, Y.M.; Pham, M.; He, H.; Austin, L. Unpacking the inherent design principles of mobile microlearning. Technol. Knowl. Learn. 2020, 25, 585–619. [Google Scholar] [CrossRef] • Khlaif, Z.N.; Salha, S. Using TikTok in education: A form of micro-learning or nano-learning? Interdiscip. J. Virtual Learn. Med. Sci. 2021, 12, 213–218. [Google Scholar] [CrossRef] • Denojean-Mairet, M.; López-Pernas, S.; Agbo, F.J.; Tedre, M. A literature review on the integration of microlearning and social media. Smart Learn. Environ. 2024, 11, 46. [Google Scholar] [CrossRef] • Hight, M.O.; Nguyen, N.Q.; Su, T.A. Chemical anthropomorphism: Acting out general chemistry concepts in social media videos facilitates student-centered learning and public engagement. J. Chem. Educ. 2021, 98, 1283–1289. [Google Scholar] [CrossRef] • Maretha, A.L.; Anggoro, K.J. App review TikTok: Benefits, drawbacks, and implications for the ELT field. MEXTESOL J. 2022, 46, n2. [Google Scholar] • Escamilla-Fajardo, P.; Alguacil, M.; López-Carril, S. Incorporating TikTok in higher education: Pedagogical perspectives from a corporal expression sport sciences course. J. Hosp. Leis. Sport Tour. Educ. 2021, 28, 100302. [Google Scholar] [CrossRef] • Hayes, C.; Stott, K.; Lamb, K.J.; Hurst, G.A. “Making every second count”: Utilizing TikTok and systems thinking to facilitate scientific public engagement and contextualization of chemistry at home. J. Chem. Educ. 2020, 97, 3858–3866. [Google Scholar] [CrossRef] • YouTube. YouTube [Video Sharing Platform]. Google. (n.d.). Available online: https://www.youtube.com (accessed on 30 November 2022). • Moodle. Moodle [Learning Management System]. Moodle. (n.d.). Available online: https://moodle.org (accessed on 30 November 2022). • Marinho, P.; Fernandes, P.; Pimentel, F. The digital portfolio as an assessment strategy for learning in higher education. Distance Educ. 2021, 42, 253–267. [Google Scholar] [CrossRef] • Stîngu, M.M. Reflexive practice in teacher education: Facts and trends. Procedia Soc. Behav. Sci. 2012, 33, 617–621. [Google Scholar] [CrossRef] • Cramer, C.; Brown, C.; Aldridge, D. Meta-reflexivity and teacher professionalism: Facilitating multiparadigmatic teacher education to achieve a future-proof profession. J. Teach. Educ. 2023, 74, 467–480. [Google Scholar] [CrossRef]This study explores the integration of digital media tools—specifically TikTok, online press news analysis, and digital portfolios—into pre-service chemistry teacher education to enhance student engagement, foster conceptual understanding, and highlight the relevance of chemistry in society. The educational intervention involved 138 pre-service teachers who analysed digital news articles to reflect on the societal and environmental implications of chemistry, promoting media literacy and awareness of socioscientific issues. Additionally, they created short-form TikTok videos, using social media to communicate scientific concepts creatively and interactively. All participants compiled their work into digital portfolios, which served as both a reflective and integrative tool. A post-course Likert-scale questionnaire (N = 77) revealed high overall satisfaction with the methodology, with 94.8% valuing the news analysis activity and 59.7% finding TikTok particularly engaging. Despite some limitations regarding access to technical infrastructure, the findings indicate that incorporating Information and Communication Technology (ICT) in this manner supports motivation, meaningful learning, and the development of key teaching competencies. This case study contributes practical insights into ICT use in science education.engAttribution-NonCommercial 4.0 Internationalhttp://creativecommons.org/licenses/by-nc/4.0/Reimagining Chemistry education for pre-service teachers through TikTok, news media, and digital portfoliosjournal article2076-3417https://doi.org/10.3390/app15147711https://www.mdpi.com/2076-3417/15/14/7711https://www.mdpi.com/journal/applsciopen access007.5001.3137.091.6372.8554:37.02371.13Chemistry educationChemical educationSocioscientific issuesICT in chemistry educationICT in chemical educationPre-service teacher chemistry trainingDigital mediaTikTokDigital portfoliosCienciasEnseñanza de las cienciasQuímicaFormación del profesoradoSistemas de información23 Química5801 Teoría y Métodos Educativos5801.01 Medios Audiovisuales5801.07 Métodos Pedagógicos5803.02 Preparación de Profesores6306.07 Sociología de Los Medios de Comunicación de Masas5910.02 Medios de Comunicación de Masas