Pérez Cervera, AlbertoLindner, BenjaminThomas, Peter J.2023-06-162023-06-162021-12-140031-900710.1103/PhysRevLett.127.254101https://hdl.handle.net/20.500.14352/5004Thomas and Lindner [P. J. Thomas and B. Lindner, Phys. Rev. Lett. 113, 254101 (2014).], defined an asymptotic phase for stochastic oscillators as the angle in the complex plane made by the eigenfunction, having a complex eigenvalue with a least negative real part, of the backward Kolmogorov (or stochastic Koopman) operator. We complete the phase-amplitude description of noisy oscillators by defining the stochastic isostable coordinate as the eigenfunction with the least negative nontrivial real eigenvalue. Our results suggest a framework for stochastic limit cycle dynamics that encompasses noise-induced oscillations.engIsostables for Stochastic Oscillatorsjournal articlehttps://doi.org/10.1103/PhysRevLett.127.254101open access517Análisis matemático1202 Análisis y Análisis Funcional