Ciesielski, Krzysztof ChrisGámez Merino, José LuisMazza, L.Seoane Sepúlveda, Juan Benigno2023-06-172023-06-1720170002-993910.1090/proc/13294https://hdl.handle.net/20.500.14352/17655We investigate the additivity A and lineability L cardinal coeffiients for the following classes of functions: ES\SES of everywhere surjective functions that are not strongly everywhere surjective, Darboux-like, Sierpinski-Zygmund, surjective, and their corresponding intersections. The classes SES and ES have been shown to be 2c-lineable. In contrast, although we prove here that ES\SES is c+-lineable, it is still unclear whether it can be proved in ZFC that ES\SES is 2c-lineable. Moreover, we prove that if c is a regular cardinal number, then A(ES\SES) ≤ c. This shows that, for the class ES\SES, there is an unusually large gap between the numbers A and L.engCardinal coefficients related to surjectivity, darboux, and sierpiński-zygmund mapsjournal articlehttp://www.ams.org/journals/proc/2017-145-03/S0002-9939-2016-13294-2/home.htmlhttp://www.ams.orgrestricted access517.5517.98Additivitylineabilitycardinal invariantDarbouxAnálisis funcional y teoría de operadoresFunciones (Matemáticas)1202 Análisis y Análisis Funcional