Castrillón López, MarcoMuñoz Masqué, Jaime2023-06-202023-06-2020121095-076110.4310/ATMP.2012.v16.n1.a2https://hdl.handle.net/20.500.14352/44008Let C→M be the bundle of connections of a principal bundle on M . The solutions to Hamilton–Cartan equations for a gauge-invariant Lagrangian density Λ on C satisfying a weak condition of regularity, are shown to admit an affine fibre-bundle structure over the set of solutions to Euler–Lagrange equations for Λ . This structure is also studied for the Jacobi fields and for the moduli space of extremals.spaHamiltonian structure of gauge-invariant variational problemsjournal articlehttp://intlpress.com/site/pub/pages/journals/items/atmp/content/vols/0016/0001/a002/index.htmlhttp://intlpress.com/site/_home/index.htmlhttp://arxiv.org/pdf/1004.4923.pdfopen access514.7Bundle of connectionsGauge invarianceHamilton-Cartan equationsJacobi fieldJet bundlesEuler-Lagrange equationsPoincaré-Cartan formGeometría diferencial1204.04 Geometría Diferencial