Castaldini, A.Cavallini, A.Fraboni, B.Piqueras de Noriega, Javier2023-06-202023-06-201995-12-011. G. Martin and S. Makram-Ebeid, in Deep Centres in Semiconductors, edited by S. T. Pantelides (NY Gordon and Breach, New York, 1986), Chap. 6, pp. 399-488. 2 J. Lagowski, H. C. Gatos, J. M. Parsey, K. Wada, M. Kaminska, and W. Walukievicz, Appl. Phys. Lett. 40, 342 (1982). 3. F. Hasegawa and M. Onomura; in Semi-Insulating Ill-VMateriils, Malmii 1988, edited by G. Grossman and L. Ledebo (A. Hilger, Bristol, 1989). p. 149. 4. Q. Y. Ma, M. T. Schmidt, X.-Wu, H. L. Evans, and E. S. Yang, J. Appl. Phys. 64, 2469 (1988). 5. A. Cola, M. G. Lupo, L. VasaneBi. and A. Valentini, Solid-State Electron. 36, 785 (1993). 6. G. M. Martin, A. Mitonneau, and A. Mircea, Electron. Lett. 13, 191 (1977). 7. D. Wong, H. K. Kim, ‘2. Q. Fang, T. E. Schlesinger, and A. G. Milnes, J. Appl. Phys: 66, 2002 (1989). 8. D. Pons, Ph.D. thesis, Universite’ de Paris VI (Paris, 1979). 9. C. Kisielowsky and E. R. Weber, Phys. Rev. B 44, 1600 (1991). l0. P Blood and J. W. Orton, The Electrical Characterization of Semiconduc ks: Majority Carriers and Electmn States (Academic, London, 1992), Chap. 7, pp. 336-397; Chap. 8, pp. 399-465. 11. Y. Zotha and M. 0. Watanabe, J. Appl. Phys. 53, 1809 (1982). 12. C. R: Crowell and M, Beguwala, Solid-State Electron. 14, 1149 (1971). 13. J. Borsuk and R. Swanson, JEEE Trans. Electron. Dev. ED-27, 2217 (1980). 14. J. I. Pankove, Phys. Rev. A 140, 2059 (1965). I5. E. Burstein, Phys. Rev. 93, 632 (1954). 16. A. Neugroschel, S. C. Pao, and F. A. Lindholm, JEEE Trans. Electron. Dev. ED-29, 894 (1982). 17. R. Yakimova, T. Paskova, and ck Hardalov, J. Appl. Phys. 74, 6170 (1993). 18. M. Taniguchi and T. Ikoma, J. Appl. Phys. 54, 6448 (1983).0021-897910.1063/1.360480https://hdl.handle.net/20.500.14352/59249© 1995 American Institute of Physics. This research has been partially supported by the Cooperation Programme “Azione Integrata” between Italy and SpainWe have investigated highly doped GaAs:Te at different doping concentrations (>10(17) cm(-3)) to assess the presence of the EL2 trap. We have utilized both capacitance and current transient spectroscopy techniques. The crucial parameter for the detection of EL2 is the relative position of the electron quasi-Fermi level in the depletion region. The observed shift of the EL2 apparent activation energy with increasing doping concentration is also discussed.engThe EL2 trap in highly doped GaAs:Tejournal articlehttp://dx.doi.org/10.1063/1.360480http://scitation.aip.org/open access538.9Level Transient SpectroscopyElectron TrapsGaasDefectDiffusionCrystalsBulkFísica de materiales