Melle Hernández, AlejandroArtal Bartolo, EnriqueCassou-Noguès, PierretteLuengo Velasco, Ignacio2023-06-202023-06-202002-070012-959310.1016/S0012-9593(02)01100-Xhttps://hdl.handle.net/20.500.14352/57103In this work we give a formula for the local Denef–Loeser zeta function of a superisolated singularity of hypersurface in terms of the local Denef–Loeser zeta function of the singularities of its tangent cone. We prove the monodromy conjecture for some surfaces singularities. These results are applied to the study of rational arrangements of plane curves whose Euler–Poincaré characteristic is three.engMonodromy conjecture for some surface singularitiesjournal articlehttp://smf4.emath.fr/Publications/AnnalesENS/http://www.sciencedirect.com/science/journal/00129593open access512.7Topological zeta functionMonodromy conjectureLocal Denef-Loeser zeta functionSuperisolated singularity of hypersurfaceRational arrangements of plane curvesGeometria algebraica1201.01 Geometría Algebraica