Lanteri, AntonioMallavibarrena Martínez de Castro, RaquelPiene, Ragni2023-06-202023-06-202008-03Fulton W. (1998). Intersection theory, 2nd ed. Springer, Heidelberg Ionescu P., Toma M. (1997). On very ample vector bundles on curves. Int. J. Math. 8: 633–643 Lanteri A. (2000). On the osculatory behavior of surface scrolls. Matematiche (Catania) 55: 447–458 Lanteri, A., Mallavibarrena, R.: Osculating properties of decomposable scrolls (Preprint) (2006) Mallavibarrena R., Piene R. (1991). Duality for elliptic normal surface scrolls. Contemp. Math. 123: 149–160 Piene, R.: Numerical characters of a curve in projective n-space. In: Holm, P. (ed.) Real and complex singularities. Proceedings, Oslo 1976, pp. 475–496. Sijthoff and Noordhoff (1977) Piene R., Sacchiero G. (1984). Duality for rational normal scrolls. Comm. Algebra 12: 1041–1066 Piene, R., Tai, H. S.: A characterization of balanced rational normal scrolls in terms of their osculating spaces. In: Xambo-Descamps, S. (ed.) Enumerative geometry. Proceedings of Sitges, 1987, pp. 215–224. Lecture Notes in Mathematics 1436, Springer, Heidelberg (1990) Shifrin T. (1986). The osculatory behavior of surfaces in P5 . Pacif. J. Math. 123: 227–2560025-587410.1007/s00209-007-0185-5https://hdl.handle.net/20.500.14352/50536Let X⊂PN be a scroll over a smooth curve C and let L=OPN(1)|X denote the hyperplane bundle. The special geometry of X implies that certain sheaves related to the principal part bundles of L are locally free. The inflectional loci of X can be expressed in terms of these sheaves, leading to explicit formulas for the cohomology classes of the loci. The formulas imply that the only uninflected scrolls are the balanced rational normal scrolls.engInflectional loci of scrollsjournal articlehttp://link.springer.com/article/10.1007/s00209-007-0185-5http://link.springer.com/journal/209restricted access512.7Projective techniquesGeometria algebraica1201.01 Geometría Algebraica