Lago Marcos, María OlivaRodríguez Marcos, PurificaciónEscudero Montero, Ana NatividadDopico Crespo, Cristina2024-08-212024-08-212016-06Lago, M. O., Rodríguez, P., Escudero, A., & Dopico, C. (2016). Detection of counting pseudoerrors: What helps children accept them? British Journal of Developmental Psychology, 34(2), 169-180. https://doi.org/10.1111/BJDP.121210261-510X10.1111/bjdp.12121https://hdl.handle.net/20.500.14352/107563Referencias bibliográficas: • Briars, D., & Siegler, R. S. (1984). A featural analysis of preschoolers' counting knowledge. Developmental Psychology, 20, 607-618. doi:10.1037/0012-1649.20.4.607 • Chu, F., VanMarle, K., & Geary, D. (2015). Early numerical foundations of young children's mathematical development. Journal of Experimental Child Psychology, 132, 205-212. doi:10.1016/j.jecp.2015.01.006 • Dowker, A. (2008). Individual differences in numerical abilities in preschoolers. Developmental Science, 11, 650-654. doi:10.1111/j.1467-7687.2008.00713.x • Dowker, A., & Sigley, G. (2010). Targeted interventions for children with arithmetical difficulties. BJEP Monograph Series II, 7, 65-81. doi:10.1348/97818543370009X12583699332492 • Escudero, A., Rodríguez, P., Lago, M. O., & Enesco, I. (2015). A 3-year longitudinal study of children's comprehension of counting: Do they recognize the optional nature of nonessential counting features? Cognitive Development, 33, 73-83. doi:10.1016/j.cogdev.2014.05.003 • Fluck, M., & Henderson, L. (1996). Counting and cardinality in English nursery pupils. The British Journal of Educational Psychology, 66, 501-517. doi:10.1111/j.2044-8279.1996.tb01215.x • Freeman, N., Antonucci, C., & Lewis, C. (2000). Representation of the cardinality principle: Early detection of error in a counterfactual test. Cognition, 74, 71-89. doi:10.1016/S0010-0277(99)00064-5 • Geary, D. C., Bow-Thomas, C. C., & Yao, Y. (1992). Counting knowledge and skill in cognitive addition: A comparison of normal and mathematically disabled children. Journal of Experimental Child Psychology, 54, 372-391. doi:10.1016/0022-0965(92)90026-3 • Geary, D. C., Hamson, C. O., & Hoard, M. K. (2000). Numerical and arithmetical cognition: A longitudinal study of process and concept deficits in children with learning disability. Journal of Experimental Child Psychology, 77, 236-263. doi:10.1006/jecp.2000.2561 • Geary, D. C., Hoard, M. K., Byrd-Craven, J., & DeSoto, M. C. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of Experimental Child Psychology, 88, 121-151. doi:10.1016/j.jecp.2004.03.002 • Gelman, R., & Gallistel, C. R. (1978). The child's understanding of number. Cambridge, MA: Harvard Press. • Kamawar, D., LeFevre, J. A., Bisanz, J., Fast, L., Skwarchuck, S. L., Smith-Chant, B., & Penner-Wilger, M. (2010). Knowledge of counting principles: How relevant is order irrelevance? Journal of Experimental Child Psychology, 105, 138-145. doi:10.1016/j.jecp.2009.08.004 • Laupa, M., & Becker, J. (2004). Coordinating mathematical concepts with the demands of authority: Children's reasoning about conventional and second-order logical rules. Cognitive Development, 19, 147-168. doi:10.1016/j.cogdev.2003.11.001 • Le Corre, M. (2014). Children acquire the later-greater principle after the cardinal principle. British Journal of Developmental Psychology, 32, 163-177. doi:10.1111/bjdp.12029 • LeFevre, J., Kamawar, D., Bisanz, J., Skwarchuk, S. L., Smith-Chant, B., Fast, L., ... Watchorn, R. (2008). Conceptual knowledge of counting: How relevant is order irrelevance? Conference Proceedings at the 30th Annual Meeting of the Cognitive Science Society, Washington, DC. • LeFevre, J., Smith-Chant, B., Fast, L., Skwarchuk, S., Sargla, E., Arnup, J., ... Kamawar, D. (2006). What counts as knowing? The development of conceptual and procedural knowledge of counting from kindergarten through Grade 2. Journal of Experimental Child Psychology, 93, 285-303. doi:10.1016/j.jecp.2005.11.002 • Munn, P. (1997). Children's beliefs about counting. In I. Thompson (Ed.), Teaching and learning early number (pp. 9-19). Buckingham, UK: Open University Press. • Rodríguez, P., Lago, M. O., Enesco, I., & Guerrero, S. (2013). Children's understanding of counting: Detection of errors and pseudoerrors by kindergarten and primary school children. Journal of Experimental Child Psychology, 114, 35-46. doi:10.1016/j.jecp.2012.08.005 • Sarnecka, B. W., & Carey, S. (2008). How counting represents number: What children must learn and when they learn it. Cognition, 108, 662-774. doi:10.1016/j.cognition.2008.05.007 • Saxe, G. B., Becker, J., Sadeghpour, M., & Sicilian, S. (1989). Developmental differences in children's understanding of number word conventions. Journal for Research in Mathematics Education, 20, 468-488. doi:10.2307/749421 • Wynn, K. (1990). Children's understanding of counting. Cognition, 36, 155-193. doi:10.1016/0010-0277(90)90003-3 • Zhang, X., Koponen, T., Räsänen, P., Aunola, K., Lerkkanen, M.-K., & Nurmi, J.-E. (2014). Linguistic and spatial skills predict early arithmetic development via counting sequenceThis study examines children's comprehension of non-essential counting features (conventional rules). The objective of the study was to determine whether the presence or absence of cardinal values in pseudoerrors and the type of conventional rule violated affects children's performance. A detection task with pseudoerrors was presented through a computer game to 146 primary school children in grades 2 through 4. The same pseudoerrors were presented both with and without cardinal values; the pseudoerrors violated conventional rules of spatial adjacency, temporal adjacency, spatial-temporal adjacency, and left-to-right direction. Half of the participants within each age group were randomly assigned to an experimental condition that included pseudoerrors with a cardinal value, and the other half were assigned to a condition that included pseudoerrors without a cardinal value. The results show that when presented with a cardinal value, children more easily recognize the optional nature of non-essential counting features. Likewise, the type of conventional rule transgressed significantly affected the children's acceptance of pseudoerrors as valid counts. Participants penalized breaches of temporal and spatial-temporal adjacency to a greater degree than breaches of spatial adjacency and left-to-right direction.engAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Detection of counting pseudoerrors: What helps children accept them?journal article2044-835Xhttps://doi.org/10.1111/bjdp.1212126568283https://produccioncientifica.ucm.es/documentos/5df8a4a22999525886b6e806https://www.scopus.com/record/display.uri?eid=2-s2.0-84964825755&origin=resultslisthttps://bpspsychub.onlinelibrary.wiley.com/doi/10.1111/bjdp.12121embargoed access159.92237.015.3CountingPseudoerrorsDetection taskPsicología evolutivaPsicología de la educación (Psicología)Psicología de la educación (Educación)6102.01 Psicología Evolutiva6102.04 Psicología Escolar