Ruiz Cembranos, José AlbertoGaray Elizondo, Luis JavierParra López, ÁlvaroSánchez Velázquez, Jose M.2024-12-052024-12-052023-08-01Jose A.R. Cembranos et al JCAP08(2023)06010.1088/1475-7516/2023/08/060https://hdl.handle.net/20.500.14352/112179COST Actions CA21106 and CA21136. FPU20/05603In the transition between inflation and reheating, the curvature scalar typically undergoes oscillations which have significant impact on the density of gravitationally produced particles. The commonly used adiabatic vacuum prescription for the extraction of produced particle spectra becomes a non-reliable definition of vacuum in the regimes for which this oscillatory behavior is important. In this work, we study particle production for a scalar field non-minimally coupled to gravity, taking into account the complete dynamics of spacetime during inflation and reheating. We derive an approximation for the solution to the mode equation during the slow-roll of the inflaton and analyze the importance of Ricci scalar oscillations in the resulting spectra. Additionally, we propose a prescription for the vacuum that allows to safely extrapolate the result to the present, given that the test field interacts only gravitationally. Lastly, we calculate the abundance of dark matter this mechanism yields and compare it to observations.engLate vacuum choice and slow roll approximation in gravitational particle production during reheatingjournal article1475-7516https://doi.org/10.1088/1475-7516/2023/08/060https://iopscience.iop.org/article/10.1088/1475-7516/2023/08/060https://arxiv.org/abs/2301.04674open access530.1252-33Cosmology of theories beyond the SMEffective field theoriesClassical theories of gravityFísica (Física)Astrofísica2212 Física Teórica2101 Cosmología y Cosmogonía