Castrillón López, MarcoMuñoz Masqué, JaimeKowalski, OldřichKrupka, DemeterKrupková, OlgaSlovák, Jan2023-06-202023-06-202008981-279-060-8https://hdl.handle.net/20.500.14352/53286Proceedings of the 10th International Conference (DGA 2007) held in Olomouc, August 27–31, 2007Let P → M be a principal G-bundle over a pseudo-Riemannian manifold (M, g). If G is semisimple, the Euler-Lagrange and the Hamilton-Cartan equations of the Yang-Mills Lagrangian defined by g are proved to remain unchanged if the Cartan-Killing metric is replaced by any other non-degenerate, adjoint-invariant bilinear form on the Lie algebraLie algebra pairing and the Lagrangian and Hamiltonian equations in gauge-invariant problemsbook parthttp://www.worldscientific.com/doi/abs/10.1142/9789812790613_0049http://www.worldscientific.com/metadata only access514.7Adjoint-invariant pairingGauge invarianceHamilton-Cartan equationsJet bundlesPrincipal connectionYang-Mills fieldsGeometría diferencial1204.04 Geometría Diferencial