García Villaluenga, Juan PedroKhayet Souhaimi, MohamedGodino Gómez, María PazSeoane Rodríguez, BenjamínMengual Cabezón, Juan Ignacio2023-06-202023-06-202005-12[1] F. Lipnizki, R.W. Field, P.K. Ten, J. Membr. Sci. 153 (1999) 183. [2] N. Wynn, Chem. Eng. Prog. 97 (2001) 66. [3] W.S.W. Ho, K.K. Sirkar, Membrane Handbook, Chapman and Hall, New York, 1992. [4] X. Feng, R.Y.M. Huang, Ind. Eng. Chem. Res. 36 (1997) 1048. [5] S.P. Nunes, K.V. Peinemann, Membrane Technology in the Chemical Industry, VCH, Weinheim, 2001. [6] R.C. Binning, R.J. Lee, J.F. Jennings, E.C. Martin, Ind. Eng. Chem. 53 (1961) 45. [7] J.P. Brun, G. Bulvestre, A. Kergreis, M. Guillou, J. Appl. Polym. Sci. 18 (1974) 1663. [8] J.W.F. Spitzen, G.H. Koops, M.H.V. Mulder, C.A. Smolders, in: R. Bakish (Ed.), Proceedings of third International Conference on Pervaporation Processes in Chemical Industry Nancy France, Bakish Materials Corp., Englewood, NJ, 1988, p. 252. [9] P. Aptel, J. Cuny, J. Jozefonvicz, G. Morel, J. Neel, J. Appl. Polym. Sci. 18 (1974) 351. [10] G.H. Koops, J.A.M. Nolten, M.H.V. Mulder, C.A. Smolders, J. Appl. Polym. Sci. 53 (1994) 1639. [11] G. Qunhui, H. Ohya, Y. Negishi, J. Membr. Sci. 98 (1995) 223. [12] P. Kanti, K. Srigowri, J. Madhuri, B. Smitha, S. Sridhar, Sep. Purif. Technol. 40 (2004) 259. [13] S. Sridhar, T. Srinivasan, U. Virendra, A.A. Khan, Chem. Eng. J. 94 (2003) 51. [14] F. Lipnizki, G. Trägårdh, Sep. Purif. Method 30 (2001) 49. [15] B. Raghunath, S.T. Hwang, J. Membr. Sci. 65 (1992) 147. [16] M.G. Liu, J.M. Dickson, P. Cˆot´e, J. Membr. Sci. 111 (1996) 227. [17] J.G. Wijmans, A.L. Athayde, R. Daniels, J. Ly, H.D. Kamaruddin, I. Pinnau, J. Membr. Sci. 109 (1996) 135. [18] J.S. Jiang, D.B. Greenberg, J.R. Fried, J. Membr. Sci. 132 (1997) 263. [19] J.P.G. Villaluenga, P. Godino, M. Khayet, B. Seoane, J.I. Mengual, Ind. Eng. Chem. Res. 43 (2004) 2548. [20] A. Tabe-Mohammadi, J.P.G. Villaluenga, H.J. Kim, T. Chan, V. Rauw, J. Appl. Polym. Sci. 82 (2001) 2882. [21] J.G. Wijmans, R.W. Baker, J. Membr. Sci. 107 (1995) 1. [22] J.G. Wijmans, J. Membr. Sci. 79 (1993) 101. [23] H.D. Kamaruddin, Ph.D. Thesis, University of Texas, Austin, 1997. [24] B. Coto, R. Wiesenberg, C. Pando, R.G. Rubio, J.A.R. Renuncio, Ber. Bunsenges. Phys. Chem. 100 (1996) 482. [25] S. Cao, Y. Shi, G. Chen, J. Membr. Sci. 165 (2000) 89. [26] N.H. Nijhuis, M.H.V. Mulder, C.A. Smolders, J. Membr. Sci. 61 (1991) 99. [27] W. Ji, S.K. Sikdar, S.T. Hwang, J. Membr. Sci. 93 (1994) 1.1383-586610.1016/j.seppur.2005.06.006https://hdl.handle.net/20.500.14352/50993© 2005 Published by Elsevier B.V. The authors acknowledge the financial support from the Spanish Ministry of Science and Technology (MCYT) through its project PPQ2003-03299. Thanks are due to Prof. T. Matsuura from the Industrial Membrane Research Institute (IMRI) for supplying PPO polymer.The effect of the membrane thickness on the pervaporation separation of methanol and methyl tertiary butyl ether mixtures through membranes was studied. Membranes of a wide range of thicknesses were prepared from two different polymers: cellulose acetate and poly(2,6-dimethyl-1,4-phenylene oxide). For each membrane, the experiments were performed at the same feed pressure, feed temperature and permeate pressure. The results showed that the permeate flux through both membrane types decreased markedly with increasing the membrane thickness, while the separation factor remained nearly constant. This behavior was discussed in terms of a resistance-in-series model.engAnalysis of the membrane thickness effect on the pervaporation separation of methanol/methyl tertiary butyl ether mixturesjournal articlehttp://dx.doi.org/10.1016/j.seppur.2005.06.006http://www.sciencedirect.com/restricted access536Mass TransferMembranesModelingPervaporationSeparationsTermodinámica2213 Termodinámica