Bonilla, Luis L.Carpio Rodríguez, Ana MaríaCarretero Zamora, Juan ManuelDuro, GemaNegreanu Pruna, MihaelaTerragni, Filippo2023-06-172023-06-172018-12-15Bonilla, L., Carpio Rodríguez, A. M., Carretero Zamora, J. M. et al. «A Convergent Numerical Scheme for Integrodifferential Kinetic Models of Angiogenesis». Journal of Computational Physics, vol. 375, diciembre de 2018, pp. 1270-94. DOI.org (Crossref), https://doi.org/10.1016/j.jcp.2018.09.008.0021-999110.1016/j.jcp.2018.09.008https://hdl.handle.net/20.500.14352/13407We study a robust finite difference scheme for integrodifferential kinetic systems of Fokker-Planck type modeling tumor driven blood vessel growth. The scheme is of order one and enjoys positivity features. We analyze stability and convergence properties, and show that soliton-like asymptotic solutions are correctly captured. We also find good agreement with the solution of the original stochastic model from which the deterministic kinetic equations are derived working with ensemble averages. A numerical study clarifies the influence of velocity cut-offs on the solutions for exponentially decaying data.engA convergent numerical scheme for integrodifferential kinetic models of angiogenesisjournal articlehttps://doi.org/10.1016/j.jcp.2018.09.008https://www.sciencedirect.com/journal/journal-of-computational-physicsopen access519.8517.9Kinetic modelFokker–PlanckIntegrodifferentialAngiogenesisEcuaciones diferencialesInvestigación operativa (Matemáticas)Sistema cardiovascular1202.07 Ecuaciones en Diferencias1207 Investigación Operativa2411.03 Fisiología Cardiovascular