Mera Rivas, María EugeniaMorán Cabré, Manuel2024-01-252024-01-252023Mera, M.E., Morán, M. Irregularity Index and Spherical Densities of the Penta-Sierpinski Gasket. Mediterr. J. Math. 20, 322 (2023). https://doi.org/10.1007/s00009-023-02528-61660-544610.1007/s00009-023-02528-6https://hdl.handle.net/20.500.14352/95294We compute the centred Hausdorff measure, Cs(P) ∼ 2.44, and the packing measure, Ps(P) ∼ 6.77, of the penta-Sierpinski gasket, P, with explicit error bounds. We also compute the full spectra of asymptotic spherical densities of these measures in P, which, in contrast with that of the Sierpinski gasket, consists of a unique interval. These results allow us to compute the irregularity index of P, I(P) ∼ 0.6398, which we define for any self-similar set E with open set condition as I(E) = 1 − (Cs(E)/Ps(E)) .engAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Irregularity Index and Spherical Densities of the Penta-Sierpinski GasketIndice de irregularidad y densidades esféricas de la penta alfombra de Sierpinskijournal article1660-5454https://www.doi.org/10.1007/s00009-023-02528-6restricted access5Self-similar setsPenta-Sierpinski gasketPacking measureCentred Hausdorff measureDensity of measuresAsymptotic spectrumComputability in fractal geometryCienciasMatemáticas (Matemáticas)Geometría12 Matemáticas1202 Análisis y Análisis Funcional1204 Geometría1206 Análisis Numérico