Fernando Galván, José Francisco2023-06-202023-06-2020080010-257110.4171/CMH/119https://hdl.handle.net/20.500.14352/49897Among the invariant factors g of a positive semidefinite analytic function f on R-3, those g whose zero set Y is a curve are called special. We show that if each special g is a sum of squares of global meromorphic functions on a neighbourhood of Y, then f is a sum of squares of global meromorphic functions. Here sums can be (convergent) infinite, but we also find some sufficient conditions to get finite sums of squares. In addition, we construct several examples of positive semidefinite analytic functions which are infinite sums of squares but maybe could not be finite sums of squares.engOn Hilbert's 17th Problem for global analytic functions indimension 3.journal articlehttp://www.ems-ph.org/journals/show_abstract.php?issn=0010-2571&vol=83&iss=1&rank=5http://www.ems.orgrestricted access511Hilbert’s 17th ProblemSum of squaresIrreducible factorsSpecial factors.Teoría de números1205 Teoría de Números