Díaz-Guerra Viejo, CarlosPiqueras de Noriega, Javier2023-06-202023-06-202007-10-151.Y. Wang and G. Cao, Chem. Mater. 18, 2787 (2006). 2. L. Biette, F. Carn, M. Maugey, M. F. Achard, J. Maquet, N. Steunou, J. Livage, H. Serier, and R. Backov, Adv. Mater. 17, 2970 (2005). 3. C. Zhou, L. Mai, Y. Liu, Y. Qi, Y. Dai, and W. Chen, J. Phys. Chem. C 111, 8202 (2007). 4. V. Petkov, P. Y. Zavalij, S. Lutta, M. S. Whittingham, V. Parvanov, and S. Shastri, Phys. Rev. B 69, 085410 (2004). 5. J. F. Xu, R. Czerw, S. Webster, D. L. Carroll, J. Ballato, and R. Nesper, Appl. Phys. Lett. 81, 1711 (2002). 6. J. Muster, V. Krstic, S. Roth, M. Burghard, G. T. Kim, J. G. Park, and Y. W. Park, Adv. Mater. (Weinheim, Ger.) 12, 420 (2000). 7. N. Pinna, U. Wild, J. Urban, and R. Schlögl, Adv. Mater. (Weinheim, Ger.) 15, 329 _2003_. 8. U. Schlecht, M. Knez, V. Duppel, L. Kienle, and M. Burghard, Appl. Phys. A: Mater. Sci. Process. 78, 527 (2004). 9. K. Takahashi, Y. Wang, and G. Cao, Appl. Phys. Lett. 86, 053102 (2005). 10. A. Talledo and C. G. Granqvist, J. Appl. Phys. 77, 4655 (1995). 11. S. Nishio and M. Kakihana, Chem. Mater. 14, 3730 (2002). 12. Z. R. Dai, Z. W. Pan, and Z. L. Wang, Adv. Funct. Mater. 13, 9 (2003). 13. D. Maestre, A. Cremades, and J. Piqueras, J. Appl. Phys. 97, 044316 (2005). 14. E. Nogales, B. Méndez, and J. Piqueras, Appl. Phys. Lett. 86, 113112 (2005). 15. J. Grym, P. Fernández, and J. Piqueras, Nanotechnology 16, 931 (2005). 16. P. Hidalgo, B. Méndez, and J. Piqueras, Nanotechnology 16, 2521 (2005). 17. D. A. Magdas, A. Cremades, and J. Piqueras, Appl. Phys. Lett. 88, 113107 (2006). 18. P. Hidalgo, B. Méndez, and J. Piqueras, Nanotechnology 18, 155203 (2007). 19. D. S. Su, M. Wieske, E. Beckmann, A. Blume, G. Mestl, and R. Schlögl, Catal. Lett. 75, 81 (2001). 20. V. Eyert and K. H. Höck, Phys. Rev. B 57, 12727 (1998). 21. C. R. Aita, Y. L. Liu, M. L. Kao, and S. D. Hansen, J. Appl. Phys. 60, 749 (1986). 22. C. V. Ramana, O. M. Hussain, S. Uthanna, and B. Srinivasulu Naidu, Opt. Mater. 10, 101 (1998). 23. S. Atzkern, S. V. Borisenko, M. Knupfer, M. S. Golden, J. Fink, A. N. Yaresko, V. N. Antonov, M. Klemm, and S. Horn, Phys. Rev. B 61, 12792 (2000). 24. W. Lambrecht, D. Djafari-Rouhani, and J. Vennik, J. Phys. C 19, 369 (1986). 25. C. V. Ramana, O. M. Hussain, B. Srinivasulu, and P. J. Reddy, Thin Solid Films 305, 219 (1997). 26. M. F. Al-Kuhaili, E. E. Khawaja, D. C. Ingram, and S. M. A. Durrani, Thin Solid Films 460, 30 (2004).0021-897910.1063/1.2799952https://hdl.handle.net/20.500.14352/51094© 2007 American Institute of Physics. This work has been supported by MEC through project MAT2006-01259.V_2O_5 nanostructures have been grown on 4H-SiC and Si substrates by a thermal deposition method without a catalyst. High aspect ratio nanowires with rectangular cross sections were grown on 4H-SiC. High-resolution transmission electron microscopy observations and cathodoluminescence (CL) spectroscopy measurements reveal the high crystal quality of the grown nanowires. Deposition on Si substrates leads to the growth of V_2O_5 platelets or rod-shaped crystals ending in arrays of parallel sharp nanotips with apex radius in the 50 nm range. A CL emission band observed centered at about 1.70 eV in spectra from these nanostructures is tentatively attributed to defect centers involving oxygen vacancies.engStructural and cathodoluminescence assessment of V_2O_5 nanowires and nanotips grown by thermal depositionjournal articlehttp://dx.doi.org/10.1063/1.2799952http://scitation.aip.orgopen access538.9Vanadium-PentoxideOptical-PropertiesThin-FilmsOxidesFísica de materiales