González López, ArtemioKamran, Niky2023-06-202023-06-201998-070393-044010.1016/S0393-0440(97)00044-2https://hdl.handle.net/20.500.14352/59724© Elsevier. One of the authors (A.G.-L.) would like to thank A. Galindo, M. Mañas and M. A. Martín Delgado for helpful conversations.A generalization of the classical one-dimensional Darboux transformation to arbitrary n- dimensional oriented Riemannian manifolds is constructed using an intrinsic formulation based on the properties of twisted Hodge Laplacians. The classical two-dimensional Moutard transformation is also generalized to non-compact oriented Riemannian manifolds of dimension n ≥ 2. New examples of quasi-exactly solvable multidimensional matrix Schrödinger operators on curved manifolds are obtained by applying the above results.engThe Multidimensional Darboux transformationjournal articlehttp://dx.doi.org/10.1016/S0393-0440(97)00044-2http://www.sciencedirect.comhttp://arxiv.org/abs/hep-th/9612100open access51-73Quantum-systemsSupersymmetryDimensionsFísica-Modelos matemáticosFísica matemática