Roldán, É.Martínez, I. A.Dinis Vizcaíno, Luis IgnacioRica, R.A.2023-06-192023-06-192014-06-091) R. Brown, The Philosophical Magazine, or Annals of Chemistry, Mathematics, Astronomy, Natural History and General Science (Taylor & Francis, 1828), Vol. 4, p. 161. 2) A. Einstein, Ann. Phys. 17, 549 (1905). 3) P. Langevin, C. R. Acad. Sci., Paris 146, 530 (1908). 4) K. Sekimoto, Stochastic Energetics, Lecture Notes in Physics (Springer, Berlin, Heidelberg, 2010). 5) T. Schmiedl and U. Seifert, EPL 81, 20003 (2008). 6) U. Seifert, Phys. Rev. Lett. 95, 040602 (2005). 7) J. Dunkel and S. A. Trigger, Phys. Rev. A 71, 052102 (2005). 8) U. Seifert, Rep. Prog. Phys. 75, 126001 (2012). 9) K. Sekimoto, F. Takagi, and T. Hondou, Phys. Rev. E 62, 7759 (2000). 10) V. Blickle and C. Bechinger, Nat. Phys. 8, 143 (2011). 11) S. Raj, M. Wojdyla, and D. Petrov, Cell Biochem. Biophys. 65, 347 (2013). 12) M. Mittal, P. P. Lele, E. W. Kaler, and E. M. Furst, J. Chem. Phys. 129, 064513 (2008). 13) I. Semenov, O. Otto, G. Stober, P. Papadopoulos, U. Keyser, and F. Kremer, J. Colloid Interface Sci. 337, 260 (2009). 14) J. A. v. Heiningen, A. Mohammadi, and R. J. Hill, Lab Chip 10, 1907 (2010). 15) F. Strubbe, F. Beunis, T. Brans, M. Karvar, W. Woestenborghs, and K. Neyts, Phys. Rev. X 3, 021001 (2013). 16) G. Pesce, V. Lisbino, G. Rusciano, and A. Sasso, Electrophoresis 34, 3141 (2013). 17) A. Ashkin, J. Dziedzic, J. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986). 18) S. Ciliberto, S. Joubaud, and A. Petrosyan, J. Stat. Mech. 2010, P12003 (2010). 19) T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, Science 328, 1673 (2010). 20) R. Huang, I. Chavez, K. Taute, B. Lukić, S. Jeney, M. Raizen, and E.-L. Florin, Nat. Phys. 7, 576 (2011). 21) S. Kheifets, A. Simha, K. Melin, T. Li, and M. G. Raizen, Science 343, 1493 (2014). 22) I. A. Martínez, E. Roldán, J. M. R. Parrondo, and D. Petrov, Phys. Rev. E 87, 032159 (2013). 23) M. Tonin, S. Balint, P. Mestres, I. A. Martínez, and D. Petrov, Appl. Phys. Lett. 97, 203704 (2010). 24) E. Roldán, I. A. Martínez, J. M. R. Parrondo, and D. Petrov, “Universal features in the energetics of symmetry breaking,” Nature Phys. 10, 457 (2014). 25) See supplemental material http://dx.doi.org/10.1063/1.4882419 for the description of the setup, calibration procedures and derivation of Eqs. (4) and (5). 26) W. Greiner, L. Neise, and H. Stöcker, Thermodynamics and Statistical Mechanics (Springer, 1999). 27) S. Bo and A. Celani, Phys. Rev. E 87, 050102 (2013). 28) M. Kerker, J. Chem. Edu. 51, 764 (1974). 29) A. Delgado, F. González-Caballero, R. Hunter, L. Koopal, and J. Lyklema, Pure Appl. Chem. 77, 1753 (2005). 30) F. Carrique, E. Ruiz-Reina, L. Lechuga, F. Arroyo, and A. Delgado, Adv. Colloid Interface Sci. 201–202, 57 (2013). 31) R. A. Rica, M. L. Jiménez, and A. V. Delgado, Soft Matter 8, 3596 (2012). 32) P. Reimann, Phys. Rep. 361, 57 (2002). 33) D. Lacoste and K. Mallick, Phys. Rev. E 80, 021923 (2009).0003-695110.1063/1.4882419https://hdl.handle.net/20.500.14352/33994© 2014 AIP Publishing. LLC. E.R., I.A.M., and R.A.R. acknowledge financial support from the Fundació Privada Cellex Barcelona, Generalitat de Catalunya Grant No. 2009-SGR-159, and from the MICINN (Grant No. FIS2011-24409). L.D. and E.R. acknowledge financial support from the Spanish Government (ENFASIS). L.D. acknowledges financial support from Comunidad de Madrid (MODELICO). We thank Antonio Ortiz-Ambriz, Juan M. R. Parrondo, and Félix Carrique for fruitful discussions. Dedicated to the memory of Professor D. Petrov.We report on the measurement of the average kinetic energy changes in isothermal and nonisothermal quasistatic processes in the mesoscale, realized with a Brownian particle trapped with optical tweezers. Our estimation of the kinetic energy change allows to access to the full energetic description of the Brownian particle. Kinetic energy estimates are obtained from measurements of the mean square velocity of the trapped bead sampled at frequencies several orders of magnitude smaller than the momentum relaxation frequency. The velocity is tuned applying a noisy electric field that modulates the amplitude of the fluctuations of the position and velocity of the Brownian particle, whose motion is equivalent to that of a particle in a higher temperature reservoir. Additionally, we show that the dependence of the variance of the time-averaged velocity on the sampling frequency can be used to quantify properties of the electrophoretic mobility of a charged colloid. Our method could be applied to detect temperature gradients in inhomogeneous media and to characterize the complete thermodynamics of biological motors and of artificial micro and nanoscopic heat engines.engMeasuring kinetic energy changes in the mesoscale with low acquisition ratesjournal articlehttp://dx.doi.org/10.1063/1.4882419http://scitation.aip.org/open access539.1Cconcentrated suspensionInstantaneous velocityBrownian-movementMotionLiquidsForceHeat.Física nuclear2207 Física Atómica y Nuclear