Garcia Barriocanal, JavierPerez Muñoz, A.M.Sefrioui, ZouhairArias, D.Varela del Arco, MaríaLeón Yebra, CarlosPennycook, S.J.Santamaría Sánchez-Barriga, Jacobo2023-06-192023-06-192013J. Mannhart and D. G. Schlom, Science 327, 1607 (2010). H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11, 103 (2012). M. Nakamura, A. Sawa, J. Fujioka, M. Kawasaki, and Y. Tokura, Phys. Rev. B 82, 201101(R) (2010). T. Yajima, Y. Hikita, and H. Y. Hwang, Nat. Mater. 10, 198 (2011). W. Ramadan, S. B. Ogale, S. Dhar, L. F. Fu, S. R. Shinde, D. C. Kundaliya, M. S. R. Rao, N. D. Browning, and T. Venkatesan, Phys. Rev. B 72, 205333 (2005). W. Ramadan, S. B. Ogale, S. Dhar, L. F. Fu, N. D. Browning, and T. Venkatesan, J. Appl. Phys. 99, 043906 (2006). C. H. Ahn, J. M. Triscone, and J. Mannhart, Nature (London) 424, 1015 (2003). C. H. Ahn, A. Bhattacharya,M. Di Ventra, J. N. Eckstein, C. Daniel Frisbie, M. E. Gershenson, A. M. Goldman, I. H. Inoue, J.Mannhart, Andrew J. Millis, Alberto F. Morpurgo, Douglas Natelson, and Jean-Marc Triscone, Rev. Mod. Phys. 78, 1185 (2006). J. Mannhart, Supercond. Sci. Technol. 9, 49 (1996). A. T. Bollinger, G. Dubuis, J. Yoon, D. Pavuna, J. Misewich, and I. Bozovic, Nature (London) 472, 458 (2011). M. Salluzzo, A. Gambardella, G. M. De Luca, R. Di Capua, Z. Ristic, and R. Vaglio, Phys. Rev. B 78, 054524 (2008). X. Leng, J. Garcia-Barriocanal, S.Bose,Y. Lee, andA.M.Goldman, Phys. Rev. Lett. 107, 027001 (2011). X. Leng, J. Garcia-Barriocanal, B. Yang, Y. Lee, J. Kinney, and A.M. Goldman, Phys. Rev. Lett. 108, 067004 (2012). M. Varela, W. Grogger, D. Arias, Z. Sefrioui, C. León, C. Ballesteros, K. M. Krishnan, and J. Santamaría, Phys. Rev. Lett. 86, 5156 (2001). Z. Sefrioui, D. Arias, V. Peña, J. E. Villegas, M. Varela, P. Prieto, C. Le´on, J. L. Martinez, and J. Santamaria, Phys. Rev. B 67, 214511 (2003). L. Ryen, E. Olsson, C. N. L. Edvardsson, and U. Helmersson, Physica C 304, 307 (1998). C. N. L. Edvardsson, U. Helmersson, L. D. Madsen, S. Czigany, L. Ryen, and E. Olsson, Physica C 304, 245 (1998). V. C. Matijasevic, B. Ilge, B. St¨auble-Pümpin, G. Rietveld, F. Tuinstra, and J. E. Mooij, Phys. Rev. Lett. 76, 4765 (1996). S. Bals, G. Rijnders, D. H. A. Blank, and G. van Tendeloo, Physica C 355, 225 (2001). G. Rijnders, S. Currás,M. Huijben, D. H. A. Blank, and H. Rogalla, Appl. Phys. Lett. 84, 1150 (2004). I. K. Schuller, Phys. Rev. Lett. 44, 1597 (1980); W. Sevenhans, M. Gijs, Y. Bruynseraede, H. Homma, and I. K. Schuller, Phys. Rev. B 34, 5955 (1986); E. E. Fullerton, I. K. Schuller, H. Vanderstraeten, and Y. Bruynseraede, ibid. 45, 9292 (1992); D. M. Kelly, E. E. Fullerton, J. Santamaria, and I. K. Schuller, Scr. Metall. Mater. 33, 1603 (1995). N. Pavlenko, I. Elfimov, T. Kopp, and G. A. Sawatzky, Phys. Rev. B 75, 140512(R) (2007). N. Pavlenko and T. Kopp, Phys. Rev. B 72, 174516 (2005). M. Varela, Z. Sefrioui, D. Arias, M. A. Navacerrada, M. Luc´ıa, M. A. L´opez de la Torre, C. León, G. D. Loos, F. Sánchez-Quesada, and J. Santamaría, Phys. Rev. Lett. 83, 3936 (1999). M. Varela, D. Arias, Z. Sefrioui, C. León, C. Ballesteros, and J. Santamaria, Phys. Rev. B 62, 12509 (2000). S. K. Tolpygo, J. Y. Lin, Michael Gurvitch, S. Y. Hou, and J. M. Phillips, Phys. Rev. B 53, 12454 (1996). D. Arias, Z. Sefrioui, G. D. Loos, F. Agullo-Rueda, J. Garcia-Barriocanal, C. Leon, and J. Santamaria, Phys. Rev. B 68, 094515 (2003). A. M. Goldman and N. Markovic, Phys. Today 51 (11), 39 (1998). N. Markovic, C. Christiansen, and A. M. Goldman, Phys. Rev. Lett. 81, 5217 (1998). A. R¨ufenacht, J. P. Locquet, J. Fompeyrine, D. Caimi, and P. Martinoli, Phys. Rev. Lett. 96, 227002 (2006). D. Matthey, N. Reyren, J.-M. Triscone, and T. Schneider, Phys. Rev Lett. 98, 057002 (2007). Y. J. Uemura et al., Phys. Rev. Lett. 62, 2317 (1989).1098-012110.1103/PhysRevB.87.245105https://hdl.handle.net/20.500.14352/33321We examine the effect of interface disorder in suppressing superconductivity in coherently grown ultrathin YBa2Cu3O7 (YBCO) layers on SrTiO3 (STO) in YBCO/STO superlattices. The termination plane of the STO is TiO2 and the CuO chains are missing at the interface. Disorder (steps) at the STO interface cause alterations of the stacking sequence of the intracell YBCO atomic layers. Stacking faults give rise to antiphase boundaries which break the continuity of the CuO2 planes and depress superconductivity. We show that superconductivity is directly controlled by interface disorder outlining the importance of pair breaking and localization by disorder in ultrathin layers.engDisorder-controlled superconductivity at YBa2Cu3O7/SrTiO3 interfacesjournal articlehttp://prb.aps.org/abstract/PRB/v87/i24/e245105open access537.312.62SuperconductivityFísica del estado sólido2211 Física del Estado Sólido