Quiroga Mellado, Juan AntonioServín Guirado, ManuelEstrada, Julio CésarVargas Balbuena, JavierTorre Belizón, Francisco Javier de la2023-06-202023-06-202011-10-101. D. Malacara, M. Servín, and Z. Malacara Interferogram Analysis For Optical Testing, Second ed. CRC Press 2005. 2. M. Servín, J. C. Estrada, and J. A. Quiroga, “The general theory of phase shifting algorithms,” Opt. Express 17(24), 21867–21881 (2009). 3. J. L. Marroquín, J. E. Figueroa, and M. Servín, “Robust quadrature filters,” J. Opt. Soc. Am. A 14(4), 779–791 (1997). 4. J. A. Quiroga, J. C. Estrada, M. Servín, and J. Vargas, “Regularized least squares phase sampling interferometry,” Opt. Express 19(6), 5002–5013 (2011). 5. A. V. Oppenheim, and R. W. Schafer, Discrete-Time Signal processing, Pearson (2010) 6. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26(13), 2504–2506 (1987). 7. http:\\goo.gl/BGjJ91094-408710.1364/OE.19.019987https://hdl.handle.net/20.500.14352/43909© 2011 Optical Society of AmericaAny linear phase sampling algorithm can be described as a linear filter characterized by its frequency response. In traditional phase sampling interferometry the phase of the frequency response has been ignored because the impulse responses can be made real selecting the correct sample offset. However least squares methods and recursive filters can have a complex frequency response. In this paper, we derive the quadrature equations for a general phase sampling algorithm and describe the role of the filter phase.engRole of the filter phase in phase sampling interferometryjournal articlehttp://dx.doi.org/10.1364/OE.19.019987http://www.opticsinfobase.org/open access535OpticsÓptica (Física)2209.19 Óptica Física