Herrero, Miguel A.Velázquez, J.J. L.2023-06-202023-06-201994-07-210764-4442https://hdl.handle.net/20.500.14352/57843We consider the equation (E) u(t) = Δu + u(p) where x Є R(N) (N ≥ 1), t > 0, p > 1. We show that if N ≥ 11 and p > N - 2 (N - 1)1/2/(N - 4) - 2(N - 1)1/2 then there exist radial and positive solutions of (E) which blow up at x = 0, t = T < ∞ and such that GRAPHICS Precise asymptotics for these solutions near t = T are also obtainedBlow-up of solutions of supercritical semilinear parabolic equationsjournal articlehttp://www.sciencedirect.com/science/journal/07644442metadata only access517.956.4Supercritical semilinear parabolic equationsradial and positive solutionsblow upEcuaciones diferenciales1202.07 Ecuaciones en Diferencias