Cobos Díaz, FernandoDomínguez Bonilla, ÓscarKühn, Thomas2023-06-172023-06-17201810.1016/j.jat.2017.10.009https://hdl.handle.net/20.500.14352/12108Let Bp,qs,α(Ω) be the Besov space with classical smoothness s and additional logarithmic smoothness of order α on a bounded Lipschitz domain Ω in Rd. For s1, s2 ∈ R, 1 ≤ p1, p2, q1, q2 ≤ ∞ and s1 − s2 = d − d(1/p2 − 1/p1)+, we show a sufficient condition on q1, q2 for nuclearity of embedding Bs1,α1 (superíndices) y p1, q1 (subíndices)(Ω) → Bp2,α2 (superíndice) y s2 q,2 (subíndices) (Ω). We also show that the condition is necessary in a wide range of parameters.engOn nuclearity of embeddings between Besov spacesjournal articlehttps//doi.org/10.1016/j.jat.2017.10.009https://www.elsevier.es/corp/open access517.98Espacios de BesovBesov spacesNuclear embeddingsGeneralized smoothnessMatemáticas (Matemáticas)Análisis funcional y teoría de operadores12 Matemáticas