Herrero, Miguel A.Velázquez, J.J. L.2023-06-202023-06-201997-010036-141010.1137/S0036141095282152https://hdl.handle.net/20.500.14352/57840Existe una errata en el artículo. Las fórmulas (1.2) y (1.4) deben ser reemplazadas por las (1.12) y (1.13) de la versión posterior del artículo ("A note on the dissolution of spherical analysis") disponible en http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=1201356&fulltextType=RA&fileId=S0308210500000913We consider here the problem of describing the melting of an ice ball surrounded by water. The corresponding mathematical model consists of the Stefan problem with radial symmetry. We obtain asymptotic expansions for the radius of the melting ball which turn out to be of a different nature according to the cases N greater than or equal to 3 and N = 2, N being the space dimension. The methods employed combine matched asymptotic expansion techniques, a priori estimates, and topological results.engOn the melting of ice ballsjournal articlehttp://epubs.siam.org/simax/resource/1/sjmaah/v28/i1/p1_s1?isAuthorized=nohttp://epubs.siam.orgrestricted access517.956.4536.2Stefan problemasymptotic behaviormatched asymptotic expansionsa priori estimatessemilinear heat-equationsblow-upparabolic equationsEcuaciones diferenciales1202.07 Ecuaciones en Diferencias