Botelho, G.Fávaro, V.V.Pellegrino, DanielSeoane-Sepúlveda, Juan B.2023-06-202023-06-2020120024-379510.1016/j.laa.2011.12.028https://hdl.handle.net/20.500.14352/42561In this short note we prove the result stated in the title: that is, for every p > 0 there exists an infinite dimensional closed linear sub-space of L-p[0, 1] every nonzero element of which does not belong to boolean OR(q>p) L-q[0, 1]. This answers in the positive a question raised in 2010 by R.M. Aron on the spaceability of the above sets (for both, the Banach and quasi-Banach cases). We also complete some recent results from Botelho et al. (2011) [3] for subsets of sequence spaces. (C) 2012 Elsevier Inc. All rights reserved.engL-p[0,1] \ boolean OR(q > p) L-q[0,1] is spaceable for every p > 0journal articlehttp://www.elsevier.com/locate/laahttp://www.elsevier.comhttp://arxiv.org/pdf/1106.0309.pdfrestricted access517.98LineabilitySpaceabilityLp spacesQuasi-Banach spacesAnálisis funcional y teoría de operadores