Creffield, Charles E.Sols Lucía, Fernando2023-06-202023-06-202011-06-291. O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006). 2. F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, Phys. Rev. Lett. 67, 516 (1991). 3. H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, and E. Arimondo, Phys. Rev. Lett. 99, 220403 (2007). 4. C. Sias, H. Lignier, Y. P. Singh, A. Zenesini, D. Ciampini, O. Morsch, and E. Arimondo, Phys. Rev. Lett. 100, 040404 (2008). 5. . Alberti, V. V. Ivanov, G. M. Tino, and G. Ferrari, Nature Phys. 5, 547 (2009). 6. E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, and H.-C. Nägerl, Phys. Rev. Lett. 104, 200403 (2010). 7. H. Lignier, A. Zenesini, D. Ciampini, O. Morsch, E. Arimondo, S. Montangero, G. Pupillo, and R. Fazio, Phys. Rev. A 79, 041601 (2009). 8. R. Kolovsky, Europhys. Lett. 93, 20003 (2011). 9. D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003); F. Gerbier and J. Dalibard, ibid. 12, 033007 (2010). 10. J. Denschlag et al., Science 287, 97 (2000). 11. M. Holthaus, Phys. Rev. Lett. 69, 351 (1992). 12. D. H. Dunlap and V. M. Kenkre, Phys. Rev. B 34, 3625 (1986). 13. C. E. Creffield and F. Sols, Phys. Rev. Lett. 100, 250402 (2008). 14. K. Kudo and T. S. Monteiro, Phys. Rev. A 83, 053627 (2011). 15. A. Eckardt, M. Holthaus, H. Lignier, A. Zenesini, D. Ciampini, O. Morsch, and E. Arimondo, Phys. Rev. A 79, 013611 (2009); A. Eckardt, C. Weiss, and M. Holthaus, Phys. Rev. Lett. 95, 260404 (2005). 16. E. Creffield, F. Sols, D. Ciampini, O. Morsch, and E. Arimondo, Phys. Rev. A 82, 035601 (2010). 17. A. Alberti, G. Ferrari, V. V. Ivanov, M. L. Chiofalo, and G. M. Tino, New J. Phys. 12, 065037 (2010).1050-294710.1103/PhysRevA.84.023630https://hdl.handle.net/20.500.14352/45022© American Physical Society. The authors thank Oliver Morsch for many stimulating discussions and acknowledge support from the Spanish MICINN through Grant Nos. FIS2007-65723 and FIS2010-21372, Acción Integrada HI2008-0163, and the Ramón y Cajal program (CEC).We examine the dynamics of ultracold atoms held in optical-lattice potentials. By controlling the switching of a periodic driving potential we show how a phase-induced renormalization of the intersite tunneling can be used to produce directed motion and control wave-packet spreading. We further show how this generation of a synthetic gauge potential can be used to split and recombine wave packets, providing an attractive route to implementing quantum computing tasks.engDirected transport in driven optical lattices by gauge generation.journal articlehttp://dx.doi.org/10.1103/PhysRevA.84.023630http://journals.aps.orgopen access538.9OpticsPhysicsAtomicMolecular & ChemicalFísica de materiales