Azagra Rueda, DanielFerrera Cuesta, JuanGómez Gil, Javier2023-06-172023-06-1720170362546X10.1016/j.na.2017.05.006https://hdl.handle.net/20.500.14352/17898We prove that every function f:Rn→R satisfies that the image of the set of critical points at which the function f has Taylor expansions of order n−1 and non-empty subdifferentials of order n is a Lebesgue-null set. As a by-product of our proof, for the proximal subdifferential ∂P, we see that for every lower semicontinuous function f:R2→R the set f({x∈R2:0∈∂Pf(x)}) is L1-null.engNonsmooth Morse–Sard theoremsjournal articlehttp://www.sciencedirect.com/science/article/pii/S0362546X17301347http://www.sciencedirect.com/restricted access517.98Morse–Sard theoremTaylor polynomialSubdifferentialNonsmoothAnálisis funcional y teoría de operadores