Piqueras de Noriega, JavierVila Santos, MaríaDíaz-Guerra Viejo, Carlos2023-06-202023-06-202012-03-15[1] A. Cabot, A. Marsal, J. Arbiol, J.R. Morante, Sens. Actuators B 99 (2004) 74. [2] A. Hameed, T. Montini, V. Gombac, P. Fornasiero, J. Am. Chem. Soc. 130 (2008) 9658. [3] L. Leontie, M. Caraman, M. Delibas, G.I. Rusu, Mater. Res. Bull. 36 (2001) 1629. [4] H.A. Harwig, Z. Anorg. Allg. Chem. 444 (1978) 151. [5] H.A. Harwig, J.W. Weenk, Z. Anorg. Allg. Chem. 444 (1978) 167. [6] L. Leontie, M. Caraman, M. Alexe, C. Harnagea, Surf. Sci. 507–510 (2002) 480. [7] X. Gou, R. Li, G. Wang, Z. Chen, D. Wexler, Nanotechnology 20 (2009) 495501. [8] S. Park, H. Kim, C. Lee, D.H. Lee, S.S. Hong, J. Korean Phys. Soc. 53 (2008) 1965. [9] L. Kumari, J. Lin, Y. Ma, J. Phys.: Condens. Matter 19 (2007) 406204. [10] W.P. Doyle, J. Phys. Chem. Solids 4 (1958) 144. [11] H. Gobrecht, S. Seeck, H.E. Bergt, A. Märtens, K. Kossmann, Phys. Stat. Sol. 33 (1969) 599. [12] V. Dolocan, Appl. Phys. 16 (1978) 405. [13] Y. Xiong, M. Wu, J. Ye, Q. Chen, Mater. Lett. 62 (2008) 1165. [14] W. Dong, C. Zhu, J. Phys. Chem. Solids 64 (2003) 265. [15] O.M. Bordun, I.I. Kukharskii, V.V. Dmitruk, V.G. Antonyuk, V.P. Savchin, J. Appl. Spectrosc. 75 (2008) 681. [16] L. Kumari, J. Lin, Y. Ma, Nanotechnology 18 (2007) 295605. [17] R.J. Betsch, W.B. White, Spectrochim. Acta 34A (1978) 505. [18] V.N. Denisov, A.N. Ivlev, A.S. Lipin, B.N. Mavrin, V.G. Orlov, J. Phys.: Condens. Matter 9 (1997) 4967. [19] S.N. Narang, N.D. Patel, V.B. Kartha, J. Mol. Struct. 327 (1994) 221. [20] C. Tian, S.-W. Chan, J. Am. Ceram. Soc. 85 (2002) 2222. [21] Q.-H. Hu, K. Stiller, E. Olsson, H.-O. Andrén, P. Berastegui, L.-G. Johansson, Phys. Rev. B 56 (1997) 11997. [22] R.K. Singhal, S. Kumar, P. Kumari, Y.T. Xing, E. Saitovitch, Appl. Phys. Lett. 98 (2011) 092510. [23] G. Blasse, H. Zhiran, A.J.A. Winnubst, A.J. Burggraaf, Mater. Res. Bull. 19 (1984) 1057. [24] C.W.M. Timmermans, G. Blasse, J. Solid State Chem. 52 (1984) 222. [25] Y. Zorenko, V. Gorbenko, T. Voznyak, V. Jary, M. Nikl, J. Lumin. 130 (2010) 1963. [26] V. Babin, V. Gorbenko, A. Krasnikov, A. Makhov, M. Nikl, K. Polak, S. Zazubovich, Y. Zorenko, J. Phys.: Condens. Matter 21 (2009) 415502. [27] A.M. Srivastava, J. Lumin. 78 (1998) 239. [28] M. Gaft, R. Reisfeld, G. Panczer, G. Boulon, T. Saraidarov, S. Erlish, Opt. Mater. 16 (2001) 279. [29] T.-K. Tseng, J. Choi, D.-W. Jung, M. Davidson, P.H. Holloway, ACS Appl. Mater. Interfaces 2 (2010) 943. [30] Z. Liu, X. Jing, L. Wang, J. Electrochem. Soc. 154 (2007) H440.0254-058410.1016/j.matchemphys.2012.01.088https://hdl.handle.net/20.500.14352/44026©2012 Elsevier B.V. This work has been supported by MICINN through projects MAT2009-07882 and CSD2009-0013 and by BSCH-UCM (Project GR35-10A-910146).Cathodoluminescence in the scanning electron microscope and photoluminescence in a confocal microscope have been used to investigate the luminescence properties of the stable monoclinic α-phase of Bi_2O_3. Powders of this oxide have been sintered at temperatures of 500 °C and 750 °C in air or in nitrogen atmospheres. Spectra of the starting powder and of the samples treated at 500 °C show luminescence bands at 1.50 eV and 1.95 eV as well as a band at 2.1 eV, more prominent in nitrogen treated samples. Sintering at 750 °C leads to quenching of the 1.50 eV infrared emission and the formation of a broad band with emission above 3 eV. The evolution of Raman bands with the sintering treatments has also been investigated.engLuminescence and Raman study of α-Bi_2O_3 ceramicsjournal articlehttp://dx.doi.org/10.1016/j.matchemphys.2012.01.088http://www.sciencedirect.comrestricted access538.9Trioxide Thin-FilmsBismuth OxideOptical-PropertiesSpectraPhaseBi_2O_3BismuthsesquioxideEvaporationFísica de materiales