Herrero, Miguel A.Rodrigo, Marianito R.2023-06-202023-06-202005-090893-965910.1016/j.aml.2004.09.015https://hdl.handle.net/20.500.14352/50102We consider an infinite system of reaction-diffusion equations that models aggregation of particles. Under suitable assumptions on the diffusion coefficients and aggregation rates, we show that this system can be reduced to a scalar equation, for which an explicit self-similar solution is obtained. In addition, pointwise bounds for the solutions of associated initial and initial-boundary value problems are provided.engA note on Smoluchowski's equations with diffusionjournal articlehttp://www.sciencedirect.com/science/article/pii/S0893965905000170http://www.sciencedirect.comrestricted access517.9517.956.4Particle aggregationreaction-diffusionexplicit solutionssupersolutionsubsolutionkpp-fisher equationcoagulation equationskineticsaggregationexistencediscretegelationmodeldynamicsbehaviorEcuaciones diferenciales1202.07 Ecuaciones en Diferencias