Vila, MercedesDíaz-Guerra Viejo, CarlosPiqueras de Noriega, Javier2023-06-202023-06-202012-08-131.A. Cabot, A. Marsal, J. Arbiol, and J. R. Morante, Sens. Actuators B 99, 74 (2004). 2.A. Hameed, T. Montini, V. Gombac, and P. Fornasiero, J. Am. Chem. Soc. 130, 9658 (2008). 3.L. Leontie, M. Caraman, M. Delibas, and G. I. Rusu, Mater. Res. Bull. 36, 1629 (2001). 4.H. A. Harwig, Z. Anorg. Allg. Chem. 444, 151 (1978). 5.H. A. Harwig and J. W. Weenk, Z. Anorg. Allg. Chem. 444, 167 (1978). 6.N. M. Sammes, G. A. Tompsett, H. N€afe, and F. Aldinger, J. Eur. Ceram. Soc. 19, 1801 (1999). 7.N. V. Skorodumova, A. K. Jonsson, M. Herranen, M. StrØmme, G. A. Niklasson, B. Johansson, and S. I. Simak, Appl. Phys. Lett. 86, 241910 (2005). 8.H. T. Fan, X. M. Teng, S. S. Pan, C. Ye, G. H. Li, and L. D. Zhang, Appl. Phys. Lett. 87, 231916 (2005). 9.M. A. Camacho López, L. Escobar Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, Opt. Mater. 33, 480 (2011). 10.H. L. Ma, J. Y. Yang, Y. Dai, Y. B. Zhang, B. Lu, and G. H. Ma, Appl. Surf. Sci. 253, 7497 (2007). 11.P. F. Yan, K. Du, and M. L. Sui, Acta Mater. 58, 3867 (2010). 12.J. Siegel, A. Schropp, J. Solís, C. N. Afonso, and M. Wuttig, Appl. Phys. Lett. 84, 2250 (2004). 13.A. J. Birnbaum, G. Satoh, and Y. L. Yao, J. Appl. Phys. 106, 043504 (2009). 14.M. Vila, C. Díaz-Guerra, and J. Piqueras, Mater. Chem. Phys. 133, 559 (2012). 15.See supplementary material at http://dx.doi.org/10.1063/1.4747198 for XRD and HRTEM of the grown nanowires. 16.R. J. Betsch and W. B. White, Spectrochim. Acta, Part A 34, 505 (1978). 17.V. N. Denisov, A. N. Ivlev, A. S. Lipin, B. N. Mavrin, and V. G. Orlov, J. Phys. Condens. Matter 9, 4967 (1997). 18.H. T. Fan, S. S. Pan, X. M. Teng, C. Ye, and G. H. Li, J. Phys. D: Appl. Phys. 39, 1939 (2006). 19.A. Rubbens, M. Drache, P. Roussel, and J. P. Wignacourt, Mater. Res. Bull. 42, 1683 (2007). 20.M. Yashima and D. Ishimura, Chem. Phys. Lett. 378, 395 (2003). 21.C. E. Mohn, S. StØlen, S. T. Norberg, and S. Hull, Phys. Rev. B 80, 024205 (2009). 22.L. Shi, Q. Hao, C. Yu, N. Mingo, X. Kong, and Z. L. Wang, Appl. Phys. Lett. 84, 2638 (2004). 23.M. Avrami, J. Chem. Phys. 7, 1103 (1939); 8, 212 (1940); 9, 177 (1941). 24.G. Mannino, C. Spinella, R. Ruggeri, A. La Magna, G. Fisicaro, E. Fazio, F. Neri, and V. Privitera, Appl. Phys. Lett. 97, 022107 (2010). 25.S. Venkataraman, H. Hermann, C. Mickel, L. Schultz, D. J. Sordelet, and J. Eckert, Phys. Rev. B 75, 104206 (2007). 26.L. E. Depero and L. Sangaletti, J. Solid State Chem. 122, 439 (1996). 27.L. Kumari, J.-H. Lin, and Y.-R. Ma, Nanotechnology 18, 295605 (2007). 28.V. Babin, V. Gorbenko, A. Krasnikov, A. Makhov, M. Nikl, K. Polak, S. Zazubovich, and Y. Zorenko, J. Phys.: Condens. Matter 21, 415502 (2009). 29.M. Gaft, R. Reisfeld, G. Panczer, G. Boulon, T. Saraidarov, and S. Erlish, Opt. Mater. 16, 279 (2001). 30.A. Matsumoto, Y. Koyama, and I. Tanaka, Phys. Rev. B 81, 094117 (2010).0003-695110.1063/1.4747198https://hdl.handle.net/20.500.14352/44214© 2012 American Institute of Physics. This work was supported by MICNN through projects MAT2009-07882 and CSD2009-0013.The α-Bi_2O_3 to σ- Bi_2O_3 phase transformation has been locally induced by laser irradiation in ceramic samples and single-crystal nanowires of this oxide. The threshold power densities necessary to induce this transformation, as well as the corresponding transformation kinetics and its temporal stability, have been investigated in both kinds of samples by micro-Raman spectroscopy. The appearance of the delta phase was also monitored by spatially resolved photoluminescence spectroscopy. An emission band peaked near 1.67 eV, not observed in α-Bi_2O_3, is tentatively attributed to to σ- Bi_2O_3 near band gap transitions.engLaser irradiation-induced alpha to delta phase transformation in Bi_2O_3 ceramics and nanowiresjournal articlehttp://dx.doi.org/10.1063/1.4747198http://scitation.aip.orgopen access538.9Thin-FilmsOptical-PropertiesOxideBismuthsesquioxideConductivityLuminescenceAlpha-Bi2o3DisorderSpectraFísica de materiales