Salinas Sánchez, Antonio JesúsVallet Regí, María Dulce Nombre2023-06-182023-06-182016-01-15Salinas Sánchez, A. J. & Vallet Regí, M. D. N. «Glasses in Bone Regeneration: A Multiscale Issue». Journal of Non-Crystalline Solids, vol. 432, enero de 2016, pp. 9-14. DOI.org (Crossref), https://doi.org/10.1016/j.jnoncrysol.2015.03.025.0022-309310.1016/j.jnoncrysol.2015.03.025https://hdl.handle.net/20.500.14352/23162RESEARCH ID M-3316-2014 (Antonio Salinas Sánchez) ORCID 0000-0002-8408-3389 (Antonio Salinas Sánchez) RESEARCH ID M-3378-2014 (María Vallet Regí) ORCID 0000-0002-6104-4889 (María Vallet Regí)3D scaffolds based in mesoporous bioactive glasses (MBGs) are being widely investigated to use in bone tissue engineering (TE) applications. These scaffolds are often obtained by rapid prototyping (RP) and exhibit an array of interconnected pores in a hierarchy of sizes. The ordered mesopore network (around 4 nm in diameter) is optimal for the adsorption and release of bone inductor biomolecules, and the arrangement of macropores over 100 mu m facilitates the bone cell ingrowths and angiogenesis. Nevertheless MBG composition can be varied almost infinitely at the atomic scale by including in the glass network oxides of inorganic elements with a therapeutic action. In this article the synthesis and characterization of MBG scaffolds based on the 80%SiO2-15%CaO-5%P2O5 (in mol-%) glass with substitutions up to 3.5% of Ga2O3 or Ce2O3 or 7.0% of ZnO are revisited. The substituent inclusion and the RP processing slightly decrease the surface area, the pore volume and the mesoporous order as well as their bioactive response in solutions mimicking blood plasma. However, these values still remain useful for bone TE applications. Results exhibiting the bactericide action of MBG scaffolds containing ZnO are also presented. (C) 2015 Elsevier B.V. All rights reserved.engGlasses in bone regeneration: A multiscale issuejournal articlehttps//doi.org/10.1016/j.jnoncrysol.2015.03.025https://www.elsevier.com/open access546615.46Mesoporous bioactive glass scaffoldsGaCe and Zn as therapeutical ionsBactericide capabilityBone tissue engineeringMaterialesQuímica inorgánica (Química)3312 Tecnología de Materiales2303 Química Inorgánica